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Abstract

We propose a unified approach to disk-based search for de-
terministic, non-deterministic, and probabilistic (MDP) set-
tings. We provide the design of an external Value Iteration
algorithm that performs at mostO(lG · scan(|E|) + tmax ·
sort(|E|)) I/Os, wherelG is the length of the largest back-
edge in the breadth-first search graphG having |E| edges,
tmax is the maximum number of iterations, andscan(n) and
sort(n) are the I/O complexities for externally scanning and
sortingn items. The new algorithm is evaluated over large
instances of known benchmark problems. As shown, the pro-
posed algorithm is able to solve very large problems that do
not fit into the available RAM and thus out of reach for other
exact algorithms.

Introduction
Guided exploration in deterministic state spaces is very
effective in domain-dependent (Korf & Felner 2007) and
domain-independent search (Bonet & Geffner 2001; Hoff-
mann 2003). There have been various attempts trying
to integrate the success of heuristic search to more gen-
eral search models. AO*, for example, extends A* over
acyclic AND/OR graphs (Nilsson 1980), LAO* (Hansen
& Zilberstein 2001) further extends AO* over AND/OR
graphs with cycles and is well suited for Markov Deci-
sion Processes (MDPs), and Real-Time Dynamic Program-
ming (RTDP) extends the LRTA* search algorithm (Korf
1990) over non-deterministic and probabilistic search spaces
(Barto, Bradtke, & Singh 1995). LAO* and RTDP aim at
the same class of problems, the difference however is that
RTDP relies on trial-based exploration of the search space
– a concept adopted from reinforcement learning – to dis-
cover the relevant states of the problem and determine the
order in which to perform value updates. LAO*, on the other
hand, finds a solution by systematically expanding a search
graph in a manner akin to A* and AO*. The IDAO* algo-
rithm, developed in the context of optimal temporal plan-
ning, performs depth-first iterative-deepening to AND/OR
graphs (Haslum 2006). All these algorithms have in com-
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mon the interleaving of dynamic updates of cost estimates
and the extension of the search frontier.

Learning DFSwas introduced in (Bonet & Geffner 2005;
2006) for a variety of models including deterministic mod-
els, Additive and Max AND/OR graphs, and MDPs. In
the experiments, LDFS turned out to be superior to blind
dynamic programming approaches like Value Iteration and
heuristic search strategies like RTDP over MDPs. LDFS is
designed upon an unified view of search spaces, described
in terms of an initial state, terminal states and their costs,
applicable actions, transition functions, and cost of applying
actions on states, which is able to model deterministic prob-
lems, AND/OR graphs under additive and max cost criteria,
Game Trees and MDPs. Interestingly, LDFS instantiates to
state-of-the-art algorithms for some of these models, and to
novel algorithms on others. It instantiates to IDA* over de-
terministic problems and bounded-LDFS, LDFS with an ex-
plicit bound parameter, instantiates to the MTD(−∞) over
Game Trees (Plaatet al. 1996). On AND/OR models, it
instantiates to novel algorithms (Bonet & Geffner 2005).

Often search spaces are so big that even in compressed
form they do not fit into main memory. In these cases, all of
the above algorithms are doomed to failure.

In this paper, we extend the Value Iteration algorithm, de-
fined over the unified search model, to use external storage
devices. The result is the External Value Iteration algorithm
which is able to solve large instances of deterministic prob-
lems, AND/OR trees, Game Trees and MDPs, and that uses
the available RAM and secondary storage.

An orthogonal approach to solve large MDPs is to use
approximation techniques to solve not the original prob-
lem but an approximation of it with the hope that the so-
lution to the latter will be a good approximation to the in-
put problem. There are different approaches to do this.
Perhaps the most known one is to use polynomial approx-
imations or linear combinations of basis functions to rep-
resent the value function (Bellman, Kalaba, & Kotin 1963;
Tsitsiklis & Roy 1996), or more complex approximations
such as those based on neural networks (Tesauro 1995;
Bertsekas & Tsitsiklis 1996). Recently, there have been
methods based on LP and constraint sampling in order to
solve the resulting approximations (Farias & Roy 2004;
Guestrin, Koller, & Parr 2001). All these approaches do not
compute exact solutions and thus are not directly compara-



ble with our approach. Furthermore, some of them trans-
form the problem into a simpler problem which is solved
with the value iteration algorithm, and thus amenable to be
treated with the techniques in this paper.

The paper is structured as follows. First, we review ex-
ternal memory algorithms, the unified search model and the
Value Iteration algorithm. Afterward, we address the exter-
nal implementation of Value Iteration suited for the unified
search model along with a working example. We provide
some experimental results of the new algorithm over some
known benchmarks, and finalize with conclusions and some
future work.

External Memory Algorithms
The need to deal with massive data sets has given rise to
the field of external memory algorithms and data structures.
Such algorithms utilize hard disk space to compensate for
the relatively small RAM. As disk accesses are much slower,
and unlike internal memory do not support constant time
random accesses, the algorithms have to exploit locality of
data in order to be effective. Such algorithms are analyzed
on an external memory model as opposed to the traditional
RAM model. One of the earliest efforts to formalize such
a model is the Aggarwal and Vitter’s two level memory
model (Aggarwal & Vitter 1988). The model provides the
necessary tools to analyze the asymptotic I/O complexity of
an algorithm; i.e., the asymptotic number of input/output
communication operations as the input size grows. The
model assumes a small internal memory of sizeM with in-
put of sizeN � M residing on the hard disk. Data can be
transferred between the RAM and the hard disk in blocks of
sizeB < M ; typically, B =

√
M . The complexity of exter-

nal memory algorithms is conveniently expressed in terms
of predefined I/O operations such asscan(N) for scanning
a file of sizeN with a complexity ofΘ(N/B) I/Os, and
sort(N) for external sorting a file of sizeN with a complex-
ity of Θ(N/B logM/B N/B) I/Os.

External graph-search algorithms (Sanders, Meyer, &
Sibeyn 2002) exploit secondary storage devices to overcome
limited amount of RAM unable to fit theOpenandClosed
lists. External breadth-first search (BFS) has been analyzed
by different groups. For undirectedexplicit graphs with|V |
nodes and|E| edges, the search can be performed with at
most O(|V | + scan(|V |) + sort(|E|)) I/Os (Munagala &
Ranade 1999), where the first term is due to the explicit rep-
resentation of the graph (stored on disk). This complexity
has been improved by (Mehlhorn & Meyer 2002) through
a more organized access to the adjacency list; an extensive
comparisons of the two algorithms on a number of graphs
have been reported in (Ajwani, Dementiev, & Meyer 2006)
and (Ajwani, Meyer, & Osipov 2007).

External implicit graph search was introduced by (Korf
2003) in the context of BFS on(n×m)-Puzzles. Edelkamp,
Jabbar, & Schr̈odl (2004) proposedExternal A* for per-
forming heuristic search on large implicit undirected graphs
and reduced the complexity toO(scan(|V |) + sort(|E|)).
For directed graphs, the complexity is bounded byO(lG ·
scan(|V |) + sort(|E|)) I/Os (Zhou & Hansen 2006), where

locality lG is the length of the largest back-edge in the BFS
graph and determines the number of previous layers to be
looked at to remove duplicate nodes.

Internal-memory algorithms like A* remove duplicate
nodes using a hash table. External memory algorithms, on
the other hand, have to rely on alternate schemes for du-
plicate detection since a hash table cannot be implemented
efficiently on external storage devices. Duplicate detection
based on hash partitions was proposed in the context of a
complete BFS for the Fifteen-Puzzle which utilized about
1.4 Terabyes of hard disk space (Korf & Schultze 2005),
while Zhou & Hansen (2004) introduced the idea ofstruc-
tured duplicate detection. A large-scale search for optimally
solving the 30 discs, 4 peg Tower-of-Hanoi problem was re-
cently performed utilizing over 398 gigabytes of hard disk
space (Korf & Felner 2007). In model checking, where
one deals with directed and weighted graphs, I/O efficient
heuristic search has been proposed by (Jabbar & Edelkamp
2005) and later extended to cycle detection (Edelkamp &
Jabbar 2006b) and parallel external heuristic search (Jabbar
& Edelkamp 2006). In action planning, (Edelkamp & Jabbar
2006a) integrates external search in cost-optimal planning
for PDDL3 domains.

The Unified Search Model
The general model for state-space problems considered by
(Bonet & Geffner 2006) is able to accommodate diverse
problems in AI including deterministic, AND/OR graphs,
Game Trees and MDPs. The model consists of:

M1. a discrete and finite state spaceS,

M2. a non-empty subset of terminal statesT ⊆ S,

M3. an initial stateI ∈ S,

M4. subsets of applicable actionsA(u) ⊆ A for u ∈ S \ T ,

M5. a transition functionΓ(a, u) for u ∈ S \ T , a ∈ A(u),
M6. terminal costscT : T → R, and

M7. non-terminal costsc : A× S \ T → R.

For deterministic models, the transition function maps ac-
tions and non-terminal states into states, for AND/OR mod-
els it maps actions and non-terminal states intosubsets of
states, Game Trees are AND/OR graphs with non-zero ter-
minal costs and zero non-terminal costs, and MDPs are non-
deterministic models with probabilitiesPa(v|u) such that
Pa(v|u) > 0 if v ∈ Γ(a, u), and

∑
v∈S Pa(v|u) = 1.

The solutions to the models can be expressed in terms of
Bellman equations. For the deterministic case, we have

h(u) =
{

cT (u) if u ∈ T ,
mina∈A(u) c(a, u) + h(Γ(a, u)) otherwise.

For the non-deterministic, Additive and Max, cases

hadd(u) =

{
cT (u) if u ∈ T ,
min

a∈A(u)
c(a, u) +

∑
v∈Γ(a,u)

h(v) otherwise.

hmax(u) =

{
cT (u) if u ∈ T ,
min

a∈A(u)
c(a, u) + max

v∈Γ(a,u)
h(v) otherwise.



Algorithm 1 Value Iteration
Input: State space modelM ; initial heuristic (estimates)h;

toleranceε > 0; maximum iterationstmax.
Output: ε-Optimal value function iftmax =∞.
1: S ← Generate-State-Space(M)
2: for all u ∈ S do h0(u)← h(u)
3: t← 0; Residual← +∞
4: while t < tmax ∧ Residual> ε do
5: Residual← 0
6: for all u ∈ S do
7: Apply update rule forht+1(u) based on the model
8: Residual← max{|ht+1(u)− ht(u)|, Residual}
9: end for

10: t← t + 1
11: end while
12: return ht−1

And, for the MDP case, we have

h(u) =

{
cT (u) if u ∈ T ,
min

a∈A(u)
c(a, u) +

∑
v∈S

Pa(v|u)h(v) otherwise.

Solutionsh∗ to the Bellman equations are value functions of
form h : S → R. The valueh∗(u) expresses the minimum
expected cost to reach a terminal state from stateu. Poli-
cies, on the other hand, are functionsπ : S → A that map
states into actions and generalize the notion of plan for non-
deterministic and probabilistic settings. In deterministic set-
tings, a plan for stateu consists of a sequence of actions to
be applied atu that is guaranteed to reach a terminal state; it
is optimal if its cost is minimum. Policies are greedy if they
are best with respect to a given value functions; policiesπ∗

greedy with respect toh∗ are optimal.

Value Iteration
Value Iteration is an unguided algorithm for solving the Bell-
man equations and hence obtaining optimal solutions for
models M1–M7.

The algorithms proceed in two phases. In the first phase,
the whole state space is generated from the initial stateI. In
this process, an entry in a hash table (or vector) is allocated
in order to store theh-value for each stateu; this value is
initialized tocT (u) if u ∈ T , or to a given heuristic estimate
(or zero if no estimate is available) ifu is non-terminal.

In the second phase, iterative scans of the state space are
performed updating the values of non-terminal statesu as:

hnew(u) := min
a∈A(u)

Q(a, u) (1)

whereQ(a, u), which depends on the model, is defined as

Q(a, u) = c(a, u) + h(Γ(a, u))

for deterministic models,

Q(a, u) = c(a, u) +
∑

v∈Γ(a,u)

h(v) ,

Q(a, u) = c(a, u) + max
v∈Γ(a,u)

h(v)

for non-deterministic Additive and Max models, and

Q(a, u) = c(a, u) +
∑
v∈S

Pa(v|u)h(v)

for MDPs.
Value Iteration converges to the solutionh∗ provided that

h∗(u) <∞ for all u. In the case of MDPs, which may have
cyclic solutions, the number of iterations is not bounded and
Value Iteration typically only converges in the limit (Bert-
sekas 1995). For this reason, for MDPs, Value Iteration
is often terminated after a predefined bound oftmax itera-
tions are performed, or when the residual falls below a given
ε > 0; the residual ismaxu∈S |hnew(u)− h(u)|. Value Iter-
ation is shown in Alg. 1.

External Value Iteration
We now discuss our approach for extending the value itera-
tion procedure to work on large state spaces that cannot fit
into the RAM. We call the new algorithmExternal Value It-
eration. Instead of working on states, we chose to work on
edges for reasons that shall become clear soon. In our case,
an edge is a 4-tuple

(u, v, a, h(v))

whereu is called the predecessor state,v the stored state,a
the operator that transformu into v, andh(v) is the current
value forv. Clearly,v must belong toΓ(a, u). In determin-
istic models,v is determined byu anda and so it can be
completely dropped, but for the non-deterministic models, it
is a necessity.

Similarly to the internal version of Value Iteration, the ex-
ternal version works in two phases. A forward phase, where
the state space is generated, and a backward phase, where
the heuristic values are repeatedly updated until anε-optimal
policy is computed, ortmax iterations are performed.

We will explain the algorithm using the graph in Fig. 1.
The states are numbered from 1 to 10, the initial state is 1,
and the terminal states are 8 and 10. The numbers next to
the states are the initial heuristic values.

Forward Phase: State Space Generation
Typically, a state space is generated by a depth-first or a
breadth-first exploration that uses a hash table to avoid re-
expansion of states. We choose an external breadth-first ex-
ploration to handle large state spaces. Since in an external
setting a hash table is not affordable, we rely ondelayed du-
plication detection(DDD). It consists of two phases, first
removing duplicates within the newly generated layer, and
then removing duplicates with respect to previously gen-
erated layers. For undirected graphs, looking at two pre-
vious layers is enough to remove all duplicates (Munagala
& Ranade 1999), but for directed graphs thelocality lG of
the graph dictates the number of layers to be looked at. In
the example graph of Figure 1,lG = 2 (8 is generated in
the third layer through state 3 and again through 7 and 9 in
the fifth layer). Note that as we deal with edges, we might
need to keep several copies of a state. In our case, an edge
(u, v, a, h(v)) is a duplicate, if and only if, its predecessor



1

2

3

4

5

6

7

8

9

10I T

0

1

0

1

1

1

2

2

2
h=3

T

Figure 1: An example graph with initialh-values.

{(∅, 1), (1,2), (1,3), (2,3), (1,4), (3,4), (2,5), (4,6), (5,6), (5,7), (3,8), (7,8), (9,8), (6,9), (7,10), (9,10)}

{(∅, 1), (1,2), (1,3), (1,4), (2,3), (2,5), (3,4), (3,8), (4,6), (5,6), (5,7), (6,9), (7,8), (7,10), (9,8), (9,10)}
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h(v) =

3 2 2 2 2 1 2 0 1 1 1 1 0 0 0 0

3 2 2 2 2 2 1 1 1 1 0 0 0 1 0 0

h(v) =

{(∅, 1), (1,2), (1,3), (2,3), (1,4), (3,4), (2,5), (4,6), (5,6), (5,7), (3,8), (7,8), (9,8), (6,9), (7,10), (9,10)}Open1
h(v) = 3 2 2 2 2 1 0 0 0 1 0 02 2

sorted on pred.

sorted on state
1 1

Figure 2: Backward phase. the filesOpen0 andTempare stored on disk. A parallel scan of both files is done from left to right.
The fileOpen1 is the result of the first update. Values that changed in the first update are shown with bold underline typeface.

u, its statev, and the actiona match an existing edge. Thus,
in undirected graphs, there are two different edges for each
undirected edge.

The procedure for DDD can be borrowed either from
sorting-based DDD (Munagala & Ranade 1999), hash-based
DDD (Korf & Schultze 2005), or structured duplicate detec-
tion (Zhou & Hansen 2004). In our case, sorting-based DDD
is the best choice since it is the most general form of DDD,
which makes no further assumptions such as the maximum
size of a layer, and also is best suited as the sorting order is
further exploited during the backward phase.

Algorithm 2 shows External Value Iteration. The algo-
rithm maintains layersL(d) on disk in the form of files. The
first phase ends up by concatenating all layers into oneOpen
list that contains all edges reachable fromI. The complex-
ity of this phase isO(lG · scan(|E|) + sort(|E|)) I/Os. The
first term is obtained by summing up the total I/Os required
for successors generation and subtractinglG many previous
layers. The second termsort(|E|) is the accumulative I/O
complexity for delayed duplicate detection on all the layers.

Backward Phase: Update of Values

This is the most critical part of the approach and deserves
more attention. To perform the update (1) on the value of
statev, we have to bring together the value of its successor
states. As they both are contained in one file, andthere is

no arrangement that can bring all successor states close to
their predecessor states, we make a copy of the entire graph
(file) and deal with the current state and its successor differ-
ently. To establish the adjacencies, the second copy, called
Temp, is sorted with respect to the nodeu. Remember that
Openis sorted with respect to the nodev.

A parallel scan of filesOpenandTempgives us access to
all the successors and values needed to perform the update
on the value ofv. This scenario is shown in Fig. 2 for the
graph in the example. The contents ofTempandOpent, for
t = 0, are shown along with the heuristic values computed
so far for each edge(u, v). The arrows show the flow of
information (alternation between dotted and dashed arrows
is just for clarity). The results of the updates are written to
the file Opent+1 containing the new values for each state
after t + 1 iterations. OnceOpent+1 is computed, the file
Opent can be removed as it is no longer needed.

Algorithm 3 shows the backward update algorithm for
the case of MDP models; the other models are similar. It
first copies theOpent list in Tempusing buffered I/O opera-
tions, and sorts the newTemplist according to the predeces-
sor statesu. The algorithm then iterates on all edges from
Opent and search for the successors inTemp. SinceOpent
is sorted with respect to statesv, the algorithm never goes
back and forth in any of the Opent or Temp files. Note that
all reads and writes are buffered and thus can be carried out



Algorithm 2 External Value Iteration
Input: State space modelM ; initial value functionh; toler-

anceε > 0; maximum iterationstmax.
Output: ε-Optimal value function (stored on disk) if

tmax =∞.
1: L(0)← {(∅, I, —, h(I))
2: d← 0
3: while (L(d) 6= ∅) do
4: d← d + 1
5: L(d)← {(u, v, a, h(v)) : u ∈ L(d−1),a ∈ A(u), v ∈

Γ(a, u)}
6: Sort L(d) with respect to edges(u, v)
7: Remove duplicate edges inL(d)
8: for loc ∈ {1, . . . , lG} do L(d)← L(d) \ L(d− loc)
9: end while

10: Open0 ← L(0) ∪ L(1) ∪ . . . ∪ L(d− 1)
11: Sort Open0 with respect to statesv
12: t← 0; Residual← +∞
13: while t < tmax ∧ Residual> ε do
14: Residual← External-VI-Backward-Update(M, Opent)
15: t← t + 1
16: end while

very efficiently by always doing I/O operations in blocks.
We now discuss the different cases that might arise when

an edge(u, v, a, h(v)) is read fromOpent. States from
Fig. 1 that comply with each case are referred in parentheses,
while the lines in the algorithm are referred in brackets. The
flow of the values inh for the example is shown in Fig. 2.

• Case I:v is terminal (states 8 & 10). Since no update is
necessary, the edge can be written toOpent+1 [Line 5].

• Case II: v is the same as the last updated state (state 3).
Write the edge toOpent+1 with such last value [Line 7].
(Case shown in Fig. 2 with curved arrows.)

• Case III: v has no successors. That means thatv is a
terminal state and so is handled by case I [Line 11].

• Case IV:v has one or more successors (remaining states).
For each actiona ∈ A(v), compute the valueQ(a, v) by
summing the products of the probabilities and the stored
values. Such value is kept in the arrayQ(a) [Line 12].

For edges(x, y, a′, h′) read fromTemp, we have:

• Case A:y is the initial state, implyingx = ∅. Skip this
edge since there is nothing to do. By taking∅ as the small-
est element, the sorting ofTempbrings all such edges to
the front of the file. (Case not shown for sake of brevity.)

• Case B:x = v, i.e. the predecessor of this edge matches
the current state fromOpent. This calls for an update in
theQ(a) values [Lines 13–17].

The arrayQ : A → R is initialized to the edge weight
c(a, v), for eacha ∈ A(v). Once all the successors are pro-
cessed, the new value forv is the minimum of the values
stored in theQ-array for all applicable actions.

An important point to note here is that the last edge read
from Tempin Line 16 is not used. The operationPush-back
in Line 18 puts back this edge intoTemp. This operation

Algorithm 3 External Value Iteration – Backward Update
Input: State space modelM ; state spaceOpent stored on

disk.
Output: Opent+1 generated by this update, stored on disk.
1: Residual← 0
2: Copy Opent into Temp
3: Sort Tempwith respect to statesu
4: for all (u, v, a, h) ∈ Opent do
5: if v ∈ T then {CASE I}
6: Write (u, v, a, h) to Opent+1
7: else ifv = vlast then {CASE II}
8: Write (u, v, a, hlast) to Opent+1
9: else

10: Read(x, y, a′, h′) from Temp
11: Post-condition:x = v {CASE III IS x 6= v}
12: Post-condition:both files are aligned{CASE IV}
13: for all a ∈ A(v) do Q(a)← c(a, v)
14: while x = v do
15: Q(a′)← Q(a′) + Pa′(y|x) h′

16: Read(x, y, a′, h′) from Temp
17: end while
18: Push-back(x, y, a′, h′) in Temp
19: hlast ← mina∈A(v) Q(a)
20: vlast ← v
21: Write (u, v, a, hlast) to Opent+1
22: Residual← max{|hlast − h|, Residual}
23: end for
24: return Residual

incurs in no physical I/O since theTempfile is buffered. Fi-
nally, to handle case II, a copy of the last updated node and
its value are stored in variablesvlast andhlast respectively.

Theorem 1 The algorithm External Value Iterationper-
forms at mostO(lG · scan(|E|) + tmax · sort(|E|)) I/Os.

Proof: The forward phase requireslG ·scan(|E|)+sort(|E|)
I/Os. The backward phase performs at mosttmax iterations.
Each such iteration consists of one sorting and two scanning
operations for a total ofO(tmax · sort(|E|)) I/Os.

Experiments
We implemented External Value Iteration (Ext-VI) and com-
pared it with Value Iteration (VI), and in some cases to the
LDFS and LRTDP algorithms, on several problem instances
from 4 different domains.

The first domain is the racetrack benchmark used in a
number of works. An instance in this domain is charac-
terized by a racetrack divided into cells such that the task
is to find the control for driving a car from a set of initial
states into a set of goal states minimizing the number of time
steps. Each applied control achieves its intended effect with
probability 0.7 and no effect with probability0.3. We re-
port results on two instances from (Barto, Bradtke, & Singh
1995), the larger instance from (Hansen & Zilberstein 2001)
and a largest instance of ours. We also extended the ring
and square instances from (Bonet & Geffner 2006). The re-
sults, obtained on an Opteron 2.4 GHz Linux machine with



Algorithm |S|/|E| RAM Time |S|/|E| RAM Time |S|/|E| RAM Time |S|/|E| RAM Time
barto-small barto-big hansen-bigger largest

VI 9,398 7.0M 1.2 22,543 16M 4.9 51,952 37M 22.1 150,910 77M 256.8
Ext-VI 139,857 7.6M 19.4 337,429 16M 82.5 780,533 34M 325.2 2,314,967 67M 1,365.3

ring-4 ring-5 square-5 square-6
VI 33,238 34M 6.5 94,395 86M 28.9 1,328,820 218M 2,899 out-of-memory

Ext-VI 497,135 33M 92.2 1,435,048 80M 193.1 21,383,804 160M 3,975 62,072,828 230M 19,378

Table 1: Performance of External Value Iteration on the racetrack domain with parametersp = 0.7 andε = 0.0001.
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Figure 3: Memory consumption in the domain wet-floor

a memory bound of 512MB, are depicted in Table 1. The ta-
ble shows the size of the problem in states for VI and edges
for Ext-VI, the amount of RAM used (in MB), and the total
time spent by the algorithm in seconds.

For square-6, the state space could not be generated by
VI within the memory bound. For Ext-VI, the edges took
about 2GB of hard disk and another 6GB for the backward
phase. We also started a much larger instance of the square
model on an Athlon X2 with 2GB RAM. The instance con-
sists of a grid of size150 × 300 with the three start states
at the top left corner and three goal states at bottom right
corner. Internal memory VI consumed the whole RAM and
could not finalize. Ext-VI generated the whole state space
with 518,843,406 edges consuming 16GB on the disk while
just 1.6GB on RAM. After 91 hours, the algorithm finished
in 56 iterations with a value ofh∗(s0) = 29.233 and resid-
ual < 10−4. We also evaluated the algorithms LDFS and
LRTDP on the same instance: LRTDP consumed 2GB while
running for 12 hours was canceled, and LDFS consumed
1.5GB while running for 118 hours and also was canceled.

The difference in RAM for Ext-VI observed in the table
is due to the internal memory consumption for loading the
instances. Moreover, external sorting of large files require
opening of multiple file pointers each allocating a small in-
ternal memory buffer.

In the second experiment, we used the wet-floor domain
from (Bonet & Geffner 2006) which consists of a naviga-
tion grid in which cells are wet with probabilityp = 0.4 and
thus slippery. The memory consumption in bytes is shown
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Figure 4: Growth of policy size in wet-floor domain.

in Fig. 3 for grids ranging from 100×100 to 800×800. As
shown, the memory consumption of VI grows without con-
trol, whereas for Ext-VI the memory consumption can be
adjusted to fit the available RAM. Indeed, we also tried a
large problem of 10,000×10,000 on an Athlon X2 machine
with 2GB RAM. The internal version of VI quickly went out
of memory since the state space contains 100M nodes. Ext-
VI, on the other hand, was able to generate the whole state
space with diameter 19,586 and 879,930,415 edges taking
16GB of space to store the BFS layers and about 45GB of
space for the backward updates. Each backward-update iter-
ation takes about half an hour, and thus we have calculated
that Ext-VI will take about 2 years to finish; we stopped the
algorithm after 14 iterations. Fig. 4 shows the increase in
size of the optimal policy for the wet-floor domain in in-
stances from 100×100 to 2000×2000. As it can be seen,
the policy size grows quadratically and since any internal-
memory algorithm must store at least all such states, one
can predict that no such algorithm will be able to solve the
10,000×10,000 instance. Fig. 5 shows the number of iter-
ations needed by internal Value Iteration on the wet-floor
domain over the same instances.

The third domain considered is then×m sliding tile puz-
zle. We performed two experiments: one with determinis-
tic moves, and the other with noisy operators that achieve
their intended effects with probabilityp = 0.9 and no effect
with probability 1 − p. Table 2 shows the results for ran-
dom instances of the 8-puzzle for both experiments. Note
the differences in the total iterations performed by the two



Algorithm p |S|/|E| Iter. Updates h(I) h∗(I) RAM Time
VI(h = 0) 1.0 181,440 27 4,898,880 0 14.00 21M 6.3

Ext-VI(h = 0) 1.0 483,839 32 5,806,048 0 14.00 11M 71.5
VI(hmanh) 1.0 181,440 20 3,628,800 10 14.00 21M 4.4

Ext-VI(hmanh) 1.0 483,839 28 5,080,292 10 14.00 11M 65.2
VI(h = 0) 0.9 181,440 37 6,713,280 0 15.55 21M 8.7

Ext-VI(h = 0) 0.9 967,677 45 8,164,755 0 15.55 12M 247.4
VI(hmanh) 0.9 181,440 35 6,350,400 10 15.55 21M 8.3

Ext-VI(hmanh) 0.9 967,677 43 7,801,877 10 15.55 12M 237.4

Table 2: Performance of External Value Iteration on deterministic and probabilistic variants of 8-puzzle.
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Figure 5: Iterations in wet-floor domain by Internal VI.

algorithms. This is due to the fact that during an iteration,
VI can also use the new values of the successors updated in
the same iteration. On the other hand, Ext-VI does not have
constant time accesses to these new values, as they might
have already been flushed to the disk. We also tried our algo-
rithm on the3×4-puzzle withp = 0.9. The problem cannot
be solved with our internal VI because the state space does
not fit in RAM, there are12!/2 ≈ 239 × 106 states. Ext-
VI generated a total of 1,357,171,197 edges taking 45GB of
disk space. Figure 6 shows the memory consumption for the
edges in each layer of the BFS exploration. The backward
update took 437 hours andfinished in 72 iterationsuntil the
residual become less thanε = 10−4. The internal memory
consumed is 1.4G on a Pentium-4 3.2GHz machine. The
h-value of initial state converged to 28.8889.

Finally, we implemented Ext-VI for deterministic settings
within the planner MIPS-XXL (Edelkamp, Jabbar, & Nazih
2006), which is based on the state-of-the-art plannerMet-
ricFF (Hoffmann 2003). As an example, we choose the
propositional domain TPP from the recent planning compe-
tition. For instance 6 of TPP, 3,706,936 edges were gener-
ated. In 30 iterations the change in the averageh-value was
less than 0.001. It took 5 hours on a 3.2GHz machine taking
a total of 3.2GB on the disk, while 167MB on RAM.
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Figure 6: Edge space of 11-puzzle withp = 0.9

Conclusions and Future Work
Wingate & Seppi (2004) proposed to use a disk-based cache
mechanism into Value Iteration and Prioritized Value Itera-
tion. The paper provides empirical evaluation on number of
cache hits and misses for both the algorithms and compare it
against different cache sizes. However, External Value Iter-
ation provides the first implementation of a well-established
AI algorithm, able to solve different state space models, that
exploits secondary storage in anI/O efficientmanner. Con-
trary to internal Value Iteration, the external algorithm works
on edges rather than on states. We provided an I/O complex-
ity analysis that is bounded by the number of iterations times
the sorting complexity. This is itself a non-trivial result, as
backward induction has to connect the predecessor states’
values with the current state’s value by connecting two dif-
ferently sorted files in order to apply the Bellman update.
We provided empirical results on known benchmark prob-
lems showing that the disk space can overcome limitations
in main memory. The largest state space we have been able
to generate in the probabilistic setting took 45.5GB.

The obtained I/O complexity time bound is remarkable.
We cannot expect a constant number of iterations, since,
in difference to the deterministic case, there is currently no
(internal) algorithm known to solve non-deterministic and
MDP problems in a linear number of node visits.

Having a working externalization, it is worthwhile to try



parallelizing the approach, e.g., on a cluster of workstations
or even on a multi-core machine. Since the update can be
done in parallel (different processors working on different
parts of the edge list), a full parallel implementation would
require the development of external parallel sorting proce-
dures. It would also be interesting to extend the approach
for heuristic search planning in non-deterministic and prob-
abilistic models.
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