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Abstract

This paper deals with planning in the presence of con-
straints and preferences as proposed for the 5th Inter-
national Planning Competition. State trajectory con-
straints are translated into LTL formulae and are com-
piled into Büchi automata in PDDL format. Preference
constraints are compiled into numerical fluents. Values
of these fluents are changed by grounded operator ef-
fects upon violation.

We propose two exploration strategies for optimal
planning in PDDL3 domains: (i) a best-first branch-
and-bound weighted heuristic search; (ii) an external
breadth-first search exploration algorithm that exploits
secondary memory, such as harddisk, to save the open
and closed lists. We prove an upper bound on the lo-
cality of the search in planning graphs that dictates
the number of layers that have to be kept to avoid
re-openings. For non-optimal planning, we present an
external variant of enforced hill climbing.

Introduction
In recent years, AI Planning has seen significant growth
in both theory and practice. PDDL (Planning Domain
Description Language) provides a common framework
to define planning domains and problems. Starting
from a pure propositional framework, it has now grown
into accommodating more complex planning problems.
In Metric planning, we see a numerical extension to the
STRIPS planning formalism, where actions can con-
tribute an increase or decrease of numeric variables.
The task is then to find a path from an initial state to
a state where all goal criteria are fulfilled, additionally,
the values of a set of numeric variables are minimized
(or maximized).

State trajectory and preference constraints are the
two language features introduced in PDDL3 (Gerevini
& Long 2005) for describing benchmarks of the 5th in-
ternational planning competition. State trajectory con-
straints provide an important step of the agreed frag-
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ment of PDDL towards the description of temporal con-
trol knowledge (Bacchus & Kabanza 2000; Kabanza &
Thiebaux 2005) and temporally extended goals (DeGia-
como & Vardi 1999; Lago, Pistore, & Traverso 2002;
Pistore & Traverso 2001). They assert conditions that
must be met during the execution of a plan and are
often expressed using quantification over domain ob-
jects. Through the decomposition of metric and tempo-
ral plans into happenings, state trajectory constraints
also feature higher levels of the PDDL hierarchy (Fox
& Long 2003).

Unfortunately, as the planning problems get compli-
cated, the size of the state and the number of states
grow significantly too - easily reaching the limits of main
memory capacity. Having a systematic mechanism to
flush the already seen states to the disk can circumvent
the problem. Algorithms that utilize secondary stor-
age devices have seen significant success in single-agent
search. In (Korf & Schultze 2005) we see a complete ex-
ploration of the state space of 15-puzzle made possible
utilizing a 1.4 Terabytes of secondary storage. In (Jab-
bar & Edelkamp 2005) a successful application of ex-
ternal memory heuristic search for LTL model checking
is presented. (Zhou & Hansen 2004b) proposed struc-
tured duplicate detection for external search, where the
state space structure was exploited to define a partition
on the state space. Among the reported results are ap-
plications on STRIPS planning problems.

The paper is structured as follows: We first dis-
cuss the planning problem with temporal and prefer-
ence constraints as proposed for the 5th International
Planning Competition. The temporal constraints are
compiled into Büchi automata that are synchronized
with the exploration of the planning problem, while
preference constraints are transformed into numerical
fluents. Upon violation, a penalty cost is imposed to
the corresponding fluent. We then discuss some im-
plementation details for the realization of this compi-
lation procedure. An overview of the external mem-
ory model is presented afterward. Then, we introduce
external Breadth-First Search for implicit undirected
graphs. Directed graphs are treated in the next sec-
tion, where we discuss a formal basis to determine the
locality of planning graphs which dictates the number



of previous layers to look at during duplicates removal
to avoid re-expansions (Edelkamp & Jabbar 2006). For
non-optimal planning, we discuss an external memory
variant of enforced hill climbing.

State Trajectory Constraints

We briefly recall automata-based model checking, a com-
mon approach for model checking of softwares.

Automata-based Model Checking
In automata-based model checking both the model to
be analyzed and the specification to be checked are
modeled as non-deterministic Büchi automata. Syn-
tactically, Büchi automata are ordinary automata. For
accepting infinite words, or runs, a different acceptance
condition is applied. Let ρ be a run and inf(ρ) be the
set of states reached infinitely often in ρ, then a Büchi
automaton accepts, if the intersection between inf(ρ)
and the set of final states F is not empty.

The desired property of the system is specified in
some form of temporal logic. We briefly introduce linear
temporal logic (LTL). A path in modelM is a sequence
of states π = S0, S1, . . . and πi denotes the suffix of π
starting at Si. LTL formulae have the form “Always f”,
where f is a path formula. If p is an atomic proposition
then p is a path formula. If f and g are path formulae
so are ¬f, f ∨ g, f ∧ g,X f,F f,G f , and f U g.

For the next time operator X we have M,π |= X f ⇔
M,π1 |= f . For the until operator g U f we have
M,π |= g U f ⇔ ∃0 ≤ k : M,πk |= f ∧ ∃k ≤
j : M,πj |= g, for the eventually operator we have
M,π |= F f ⇔ ∃0 ≤ k : M,πk |= f , and for the globally
operator we have M,π |= G f ⇔ ∀0 ≤ k : M,πk |= f .

Transforming the model and the specification into
Büchi automata assumes that the system can be mod-
eled by a deterministic finite state machine, and that
the LTL formula can be transformed into an equiva-
lent Büchi automaton. The contrary is not always pos-
sible, since Büchi automata are clearly more expres-
sive than LTL expressions (Wolper 1983). Checking
correctness is reduced to checking language emptiness.
More formally, the model checking procedure validates
that a model represented by an automatonM satisfies
its specification represented by an automaton S. The
task is to verify if L(M) ⊆ L(S). In words: the lan-
guage accepted by the model is included in that of the
specification. We have L(M) ⊆ L(S) if and only if
L(M) ∩ L(S) = ∅.

Büchi automata are closed under intersection and
complementation (Buchi 1962), so that there exists an
automaton that accepts L(S) and an automata that
accepts L(M) ∩ L(S).

It is possible to complement a Büchi automaton, but
the worst-case running time of such a construction is
double-exponential in the size of the formula. There-
fore, in practice, one constructs the automaton for nega-
tion of the LTL formula, avoiding complementation.

The product is synchronous, that is, each transition
in one automata implies one in the other. The property
automaton is non-deterministic, such that both the suc-
cessor generation and the temporal formula representa-
tion may introduce branching to the overall exploration
module. The construction assumes that all states in the
model are accepting.

Application to Temporal Plan Constraints
In the proposed extension to planning we do not have
to negate the property formula. Planning goals already
correspond to the negations of properties in model
checking. If ordinary goals without temporal modali-
ties are used, we add their satisfaction to the acceptance
condition of the model. For state trajectory constraints
φ, we search for a witness in L(M) ∩ L(φ) 6= ∅, where
M is the original plan space.

For the exploration we, therefore, need a Büchi au-
tomaton for the model and one for the trajectory con-
straint, together with some algorithm that validates if
the language intersection is not empty. By the seman-
tics of (Gerevini & Long 2005) it is clear that all se-
quences are finite, so that we can interpret a Büchi
automaton as a non-deterministic finite state automa-
ton (NFA), which accepts a word if it terminates in a
final state. The labels of such an automaton are condi-
tions over the propositions and fluents in a given state.
We will illustrate how these conditions can be modeled
using planning operators. There are some important
observations to be made:

1. It is well known that an NFA can be transformed
into an equivalent deterministic one using a power set
construction (Hopcroft & Ullman 2000). This DFA,
however, can become exponentially large, so that in
most cases a simulation of the NFA is preferable.

2. Most state trajectory constraints are universally
quantified. The quantified expressions can be un-
rolled. This is always possible as the scope of the
quantified object variables is finite.

3. As the union of the conditions of all outgoing tran-
sitions is not always trivial, synchronizing the plan-
ning model with the automata of state trajectory con-
straint may also prune the exploration.

Examples
In PDDL3, the constraint a fragile block can never have
something above it is expressed as
(always (forall (?b - block)

(implies (fragile ?b) (clear ?b))

We call this condition an always/every constraint. The
LTL formula for two selected blocks a and b is
[] ((fragile_a -> clear_a) &&

(fragile_b -> clear_b))

The corresponding automaton is shown in Fig. 11. The

1The automata in the figures are constructed automati-
cally using the LTL to Büchi automaton converter. The in-



fragile_a −> clear_a && fragile_b −> clear_binit

Figure 1: Automaton for the always/every constraint
with a transition in clause form.

less_equal_fuel_used_10init

Figure 2: Automaton for numeric constraint.

automaton consists of only one state. Numeric condi-
tions as generated, e.g., by (always (<= (fuel-used)
10)) do not lead to additional expressiveness as for
the translation process they are interpreted as integral
propositions to be combined in transition labels. Fig. 2
provides a simple example. When applying such an au-
tomata, the construction has to be followed by a back-
ward translation of edges to numeric conditions.

The assertion each block should be put on the table at
least once corresponds to
(forall (?b - block)(sometime (ontable ?b)))

called an every/sometime constraint. For two blocks
a Büchi automaton with respect to the LTL formula
(<> ontable_a) && (<> ontable_b) is constructed.
It is shown in Fig. 3 (top right).

The statement in some state visited by the plan all
blocks are on the table is expressed as
(sometime (forall (?b - block) (ontable ?b))

denoted as sometime/every constraint. The according
LTL formula is <> (ontable a && ontable b) with a
Büchi automata shown in Fig. 3 (top left). It is much
simpler than the previous one.

The expression each truck should visit each city at
most once is given by the constraint

(forall (?t - truck ?c - city)
(at-most-once (at ?t ?c)))

We use a simple instantiation with one truck and one
city, yielding the LTL formula (cf. (Gerevini & Long
2005))
[](at_truck_a_city_a->

(at_truck_a_city_a U ([]!at_truck_a_city_a)))

The corresponding Büchi-Automaton is displayed in
Fig. 3 (bottom). The translation from a PDDL con-
straint to a Büchi automata is not lossless. This is due
to the fact that PDDL constraints are defined over fi-
nite runs while Büchi automata are defined over infinite
runs. It is not possible to capture the exact semantics

termediate LTL notation satisfies the syntax of SPIN model
checker; always is denoted as [] and eventually as <>. We
avoid hyphens in declaring the propositions as they are mis-
interpreted by the converter. They are re-introduced when
generating the translated PDDL description.
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Figure 3: Büchi automata for the sometime/every con-
straint (top left), every/sometime constraint (top right)
and exactly-once constraint (bottom).

of, e.g., at-most-once φ, when the plan consists of just
one action and φ holds in the initial state as well as in
the goal state. In our previous example, this implies
that we will terminate at the state 1 of the automata
and will claim that the constraint is not satisfied.

Instead of deriving one automata for both constraints
in common, simulating two synchronized automata, one
for each constraint, is equivalent. Hence, we observe
a trade-off between the size of the automata for one
constraint and the maintenance of several concurrent
automata.

Preferences
Preferences model soft constraints that are desirable
but do not have to be fulfilled in a valid plan. The de-
gree of desirability of satisfying a preference constraint
is specified in the plan metric.

Simple Preferences
Simple preferences refer to ordinary propositions (and
are included to the planning goal). E.g., if we prefer
block a to reside on the table during the plan execu-
tion, we write (preference p (on-table a)) with a
validity check (is-violated p) in the plan objective.
Such checks are interpreted as natural numbers that
can be scaled and combined with other variable assign-
ments in the plan metric. To evaluate the costs for a
given plan, we have to accumulate how often the stated
preference condition is violated in the preconditions of
the actions in the plan. The according numerical value
is substituted in the metric for its evaluation. Quanti-
fied preference constraints like
(forall (?b - block) (preference p (clear ?b))



are flattened to multiple instantiated preference condi-
tions (one for each block), while the inverse expression
(preference p (forall (?b - block) (clear ?b))

leads to only one constraint.

Preference on Temporal Plan Constraints
Preferences for state trajectory constraints like
(preference cleaned

(forall (?t truck) (always (clean ?t))))

can, in principle, also be dealt with automata theory.
Instead of requiring to reach an accepting state we pre-
fer to be there, by means that not arriving at an ac-
cepting state incurs costs to the evaluation of the plan
metric using the (is-violated cleaned) variable.

Language Compilation
Have the two language extensions enriched the PDDL
language or is it possible to translate the new constructs
away? Fortunately, we can show how to implement a
language compilation from PDDL3 to PDDL2.

Temporal Plan Constraints
To encode the simulation of the synchronized au-
tomata, we devise a predicate (at ?n - state ?a -
automata) to be instantiated for each automata state
and each automata that has been devised. For detect-
ing accepting states, we include instantiations of predi-
cate (accepting ?a - automata). The initial state of
the planning problem includes the start state of the au-
tomata and an additional proposition if it is accepting.
For all automata, the goal includes their acceptance.

Next, we have to specify allowed automata transi-
tions in form of planning actions. This is done by
declaring a grounded operator for each automata tran-
sition, with the current automaton state and the tran-
sition label as preconditions, as well as the current au-
tomaton state as the delete and the successor state as
the add effect. For transition leading to an accepting
state, we include the corresponding automata accep-
tance proposition to the add effects. As we require a
tight synchronization between the constraint automa-
ton transitions and the operators in the original plan-
ning space, we include synchronization flags that are
flipped when an ordinary or a constraint automaton
transition is chosen. An example for a grounded tran-
sition is
(:action sync-trans-a-0-init-a-0-accept-0
:precondition

(and (at-a-0-init) (sync-automaton-a-0)
(in-package1-truck2))

:effect
(and (accepting-a-0) (not (at-a-0-init))

(at-a-0-accept-0) (not (sync-automaton-a-0))
(sync-ordinary)))

As said, the size of the Büchi automaton for a given for-
mula can be exponential in the length of the formula2.
In practice, the size of the automaton is often small
compared to the size of the (grounded) model.

2In the notion of essentiality (Nebel 2000), which pro-
vides a complexity theory for domain compilations, the com-

Metric Time Constraints

So far we have only seen how to derive automata
for the untimed plan constraints sometime, always,
at-most-once. Fortunately, (Gerevini & Long 2005)
show that sometime-before and sometime-after can
be expressed using standard LTL expressions, so these
modalities easily fit into the above framework. For
metric time constraints like within, always-within,
hold-during, and hold-after we have to restrict ac-
tions to the execution time window specified in the con-
straints. Moreover, these constraints necessarily call for
parallel/temporal planning, as they refer to absolute
points in time for plan execution.

These expressions can be tackled using timed ini-
tial literals as already contained in the language
PDDL2 (Hoffmann & Edelkamp 2005). Timed initial
literals denote fixed dates in plan time in which an atom
is true or false. As they are only allowed to be checked
in operators’ preconditions, they correspond to action
execution time windows. The modalities hold-after,
and hold-during immediately translate to timed initial
literals for the operators, in which the stated conditions
are satisfied in the preconditions. If the state formula is
disjunctive the planner has to deal with multiple action
windows.

For combined metric and temporal modalities as in
within and always-within action execution time win-
dow are included in form of additional timed initial lit-
eral for the preconditions of the automata’s transitions.

Preferences

For preference p we include numerical fluents
is-violated-p to the grounded domain description.
For each operator and each preference we apply the
following reasoning. If the preferred predicate is con-
tained in the delete list then the fluent is increased, if it
is contained in the add list, then the fluent is decreased,
otherwise it remains unchanged3.

For preferences p on a state trajectory con-
straint that has been compiled to an automaton a,
the fluents (is-violated-a-p) substitute the atoms
(is-accepting-a) in an obvious way. If the au-
tomata accepts, the preference is fulfilled, so the value
of (is-violated-a-p) is set to 0. In the transition that
newly reaches an accepting state (is-violated-a-p)
is set to 0, if it enters a non-accepting state it is set to
1. The skip operator also induces a cost of 1 and the
automaton moves to a dead state.

pilation is essential. Similar essential compilations have
been proposed by (Gazen & Knoblock 1997) for ADL to
STRIPS and by (Thiebaux, Hoffmann, & Nebel 2005) for
domain axioms.

3An alternative semantic to (Gerevini & Long 2005)
would be to set the fluent to either 0 or 1. For rather com-
plex propositional or numerical goal conditions in a prefer-
ence condition, we can use conditional effects.



Implementation

We first transform PDDL3 files with preferences and
state trajectory constraints to grounded PDDL3 files
without them. For each state trajectory constraint, we
parse its specification, flatten the quantifiers and write
the corresponding LTL-formula to disk.

Then, we derive a Büchi-automaton for each LTL for-
mula and generates the corresponding PDDL code to
modify the grounded domain description4. Next, we
merge the PDDL descriptions corresponding to Bc̈hi
automata and the problem file. Given the grounded
PDDL2 outcome, we apply efficient heuristic search
forward chaining planner Metric-FF (Hoffmann 2003).
Note that by translating plan preferences, otherwise
propositional problems are compiled into metric ones.
For temporal domains, we extended the Metric-FF
planner to handle temporal operators and timed initial
literals. The resulting planner is slightly different from
known state-of-the-art systems of adequate expressive-
ness, as it can deal with disjunctive action time windows
and uses an internal linear-time approximate scheduler
to derive parallel (partial or complete) plans. The plan-
ner is capable of compiling and producing plans for all
competition benchmark domains.

Due to the numerical fluents introduced for prefer-
ences, we are faced with a search space where cost is
not neccessarily monotone. For such state spaces, we
have to look at all the states to reach to an optimal solu-
tion. The issue then arises is if it is possible to reach an
optimal solution fast. We propose to use a branch-and-
bound like procedure on top of the best-first weighted
heuristic search as offered by the extended Metric-FF
planning system. Upon reaching a goal, we terminate
our search and create a new problem file where the goal
condition is extended to minimize the found solution
cost. The search is restarted on this new problem de-
scription. The procedure terminates when the whole
state space is looked at. The rationale behind this is to
have improved guidance towards a better solution qual-
ity. If internal search fails to terminate within a spec-
ified amount of time, we switch to External Breadth-
First search (BFS).

External Exploration

For complex planning problems, the size of the state
space can easily surpass the main memory limits. Most
modern operating systems provides a facility to use
larger address spaces through virtual memory that can
be larger than internal memory. When the program is
executed, virtual addresses are translated into physical
addresses. Only those portions of the program currently
needed for the execution are copied into main memory;
the rest stays on the harddisk. For the programs that
do not exhibit any locality of reference for memory ac-

4www.liafa.jussieu.fr/∼oddoux/ltl2ba. Similar
tools include LTL→NBA and the never-claim converter in-
herent to the SPIN model checker.

cesses, such general purpose virtual memory manage-
ment can instead lower down their performances.

Algorithms that explicitly manage the memory hier-
archy can lead to substantial speedups, since they are
more informed to predict and adjust future memory
access. The standard model for comparing the perfor-
mance of external algorithms consists of a single pro-
cessor, a small internal memory that can hold up to M
data items, and an unlimited secondary memory. The
size of the input problem (in terms of the number of
records) is abbreviated by N . Moreover, the block size
B governs the bandwidth of memory transfers. Only
the number of block reads and writes are counted, com-
putations in internal memory do not incur any cost.
The single disk model for external algorithms has been
devised by (Aggarwal & Vitter 1988).

It is convenient to express the complexity of external-
memory algorithms using a number of frequently occur-
ring primitive operations. Here D represents the num-
ber of disks that can be accessed simultaneously.

1. Scanning : scan(N) with an I/O complexity of Θ( N
DB )

that can be achieved through trivial sequential access.

2. Sorting : sort(N) with an I/O complexity of
Θ( N

DB logM/B
N
B ) that can be achieved through

Merge or Distribution Sort

External Breadth-First Search in
Undirected Graphs

Munagala and Ranade’s algorithm (Munagala &
Ranade 1999) for explicit Breadth-First Search has
been adapted for implicit graphs. The new algorithm is
known as delayed duplicate detection for frontier search.
It assumes an undirected search graph. Let I be the
initial state, and N be the implicit successor generation
function. The algorithm maintains BFS layers on disk.
Layer Open(i − 1) is scanned and the set of successors
are put into a buffer of size close to the main memory
capacity. If the buffer becomes full, internal sorting fol-
lowed by a duplicate elimination scanning phase gener-
ates a sorted duplicate-free state sequence in the buffer
that is flushed to disk.

In the next step, external merging/sorting is applied
to remove duplicates in the flushed buffers. This results
in a duplicates-free sorted file corresponding to Open(i).
One also has to eliminate Open(i− 1) and Open(i− 2)
from Open(i) to avoid re-expansions; that is, nodes ex-
tracted from the external queue are not immediately
deleted, but kept until after the layer has been com-
pletely generated and sorted, at which point duplicates
can be eliminated using a parallel scan. The process is
repeated until Open(i− 1) becomes empty, or the goal
has been found.

The corresponding pseudo-code is shown in Fig-
ure 4. A-sets in the algorithm correspond to tempo-
rary files. Termination is not shown, but imposes no
additional overhead. As with the algorithm of Muna-
gala and Ranade, delayed duplicate detection applies



Procedure External-BFS
Open(−1)← ∅,Open(0)← {I}
i← 1
while (Open(i− 1) 6= ∅)

A(i)← N(Open(i− 1))
A′(i)← remove duplicates from A(i)
Open(i)← A′(i) \ (Open(i− 1) ∪Open(i− 2))
i← i + 1

Figure 4: Delayed duplicate detection in BFS.

O(sort(|N(Open(i−1))|)+scan(|Open(i−1)|+|Open(i−
2)|)) I/Os. However, since no explicit access to the ad-
jacency list is needed, by

∑
i |N(Open(i))| = O(|E|)

and
∑

i |Open(i)| = O(|V |), the total execution time is
O(sort(|E|) + scan(|V |)) I/Os.

Locality in Planning Domains
How many layers are sufficient for full duplicate de-
tection in general is dependent on a property of the
search graph called locality. For integer weighted prob-
lem graphs, it is defined as the maximum max{δ(s, u)−
δ(s, v), 0} of all nodes u, v, with v being a successor of u
and δ the shorted path distance. For undirected graphs
we always have that δ(s, u) and δ(s, v) differ by at most
one so that the locality is 1. The locality determines the
thickness of the boundary slice of the graph needed to
prevent duplicates.

Let l be the graph’s locality, and k the number of
stored layers. In breadth-first search, when layer m is
expanded, all previous layers with g-value smaller than
m have been closed, and are known by their optimal
g-value. Thus, if a node u at level m is expanded, and
its successor v has a shorter optimal distance to s, i.e.,
m = δ(s, v) < δ(s, u) = m′, then v must have been
encountered earlier in the search, in the worst case at
layer m′ = m−l. The re-generation of v will be avoided
if and only if it is contained in the stored layers m −
k . . .m− 1; i.e., if and only if k ≥ l. This is the basis of
the following theorem due to (Zhou & Hansen 2004a)

Theorem 1 (Locality Determines Boundary) The
number of previous layers of a breadth-first search graph
that need to be retained to prevent duplicate search ef-
fort is equal to the locality of the search graph.

As a special case, in undirected graphs, the locality
is 1 and we need to store the immediate previous layer
only to check for duplicates.

The condition max{δ(s, u)− δ(s, v), 0} over all nodes
u, v, with v being a successor of u is not a graph prop-
erty. So the question is if we can find a sufficient con-
dition or upper bound for it.

Theorem 2 (Upper-Bound on Locality) The locality of
a uniformly weighted graph for breadth-first search can
be bounded by the minimal distance to get back from a
successor node v to u, maximized over all u. In other

words, with Γ representing the set of successors, we have

max
u,v∈Γ(u)

{δ(v, u)} ≥ max
u,v∈Γ(u)

{δ(s, u)− δ(s, v), 0}

Proof: For any nodes s, u, v in a graph the triangular
property of shortest path δ(s, u) ≤ δ(s, v) + δ(v, u) is
satisfied, in particular for s being the start node of the
BFS and v ∈ Γ(u). Therefore δ(v, u) ≥ δ(s, u)− δ(s, v)
and maxu,v∈Γ(u){δ(v, u)} ≥ maxu,v∈Γ(u){δ(s, u) −
δ(s, v)}. In positively weighted graphs we have
δ(v, u) ≥ 0 such that maxu,v∈Γ(u){δ(v, u)} is larger than
the locality.

As for graphs without self-loops we have
maxu,v∈Γ(u){δ(v, u)} = maxu{δ(u, u)} − 1, in or-
der to bound the locality we have to look for largest
minimal cycles in the graph.

The question then arises is: How can we decide the
condition in an implicitly given graph as they appear
in action planning? In the following we provide an an-
swer to this question based on the rules or operators
involved in a state space. Without loss of generality,
we consider STRIPS planning operators in the form
of 〈pre(O)add(O), del(O)〉, representing preconditions,
add, and delete lists for an operator O. A duplicate
node in an implicit graph appears when a sequence of
operators, applied to a state generate the same state
again, i.e., they cancel the effects of each other. Hence
the following definition:
Definition 1 (no-op Sequence) A sequence of opera-
tors O1, O2, . . . , Ok is a no-op sequence if its applica-
tion on a state produces no effects, i.e, Ok◦. . .◦O2◦O1 =
no-op,

This definition provides us the basis to bound the lo-
cality of the implicit graphs in the following theorem. It
generalizes undirected search spaces, in which for each
operator O1 we find an inverse operator O2 such that
O2 ◦O1 = no-op.
Theorem 3 (no-op Sequence determines Locality) Let
O be the set of operators in the search space and l =
|O|. If for all operators O1 we can provide a sequence
O2, . . . , Ok with Ok◦. . .◦O2◦O1 = no-op, where no-op is
the identity mapping, then the locality of the implicitly
generated graph is at most k − 1.
Proof: If Ok ◦ . . . ◦ O2 ◦ O1 = no-op we can reach
each state u again in at most k steps. This im-
plies that maxu{δ(u, u)} = k. Theorem 2 shows that
maxu{δ(u, u)} − 1 is an upper bound on the locality.

The condition Ok ◦ . . .◦O2◦O1 = no-op can be tested
in O(lk) time. It suffices to check that the cumulative
add effects of the sequence is equal to the cumulative
delete effects. Using the denotation by (Haslum & Jons-
son 2000), the cumulative add CA and delete CD effects
of a sequence can be defined inductively as,

CA(Ok) = Ak CD(Ok) = Dk and,

CA(O1, . . . , Ok) = (CA(O1, . . . , Ok−1)−Dk) ∪Ak

CD(O1, . . . , Ok) = (CD(O1, . . . , Ok−1)−Ak) ∪Dk



Procedure Cost-Optimal-External-BFS
U ←∞; i← 1
Open(−1)← ∅; Open(0)← {I}
while (Open(i− 1) 6= ∅)

A(i)← N(Open(i− 1))
forall v ∈ A(i)

if v ∈ G and Metric(v) < U
U ← Metric(v)
ConstructSolution(v)

A′(i)← remove duplicates from A(i)
for loc← 1 to locality

A′(i)← A′(i)\ Open(i− loc)
Open(i)← A′(i)
i← i + 1

Figure 5: Cost-Optimal External BFS Planning. G is
the set of goals and U the best goal cost found.

Theorem 3 gives us the missing link to the successful
application of external breadth first search in planning.
Subtracting k previous layer plus the current layer from
the successor list in an external breadth-first search
guarantees its termination on finite planning graphs.

Cost-Optimal External BFS

In planning with preferences, we often have a monotone
decreasing instead of a monotonic increasing cost func-
tion. Hence, we cannot prune states with an evaluation
larger than the current one. Essentially, we are forced
to look at all states.

Figure 5 displays the pseudo-code for external BFS
exploration incrementally improving an upper bound U
on the solution length. The state sets that are used are
represented in form of files. The search frontier denot-
ing the current BFS layer is tested for an intersection
with the goal, and this intersection is further reduced
according to the already established bound.

In an internal non memory-limited setting, a plan is
constructed by backtracking from the goal node to the
start node. This is facilitated by saving with every node
a pointer to its predecessor. For memory-limited fron-
tier search, a divide-and-conquer solution reconstruc-
tion is needed for which certain relay layers have to be
stored in main memory. In external search divide-and-
conquer solution reconstruction and relay layers are not
needed, since the exploration fully resides on disk.

There is one subtle problem: predecessor pointers are
not available on disk. This is resolved as follows. We
propose to save predecessor together with every state.
Once a goal is found, backtracking to the initial state
along the stored files, and by looking for the matching
predecessors constructs the whole solution. This results
in a I/O complexity that is at most linear to the number
of stored states. In the pseudo-codes this procedure is
denoted by ConstructSolution.

Procedure External Enforced Hill-Climbing
u← I
h = Heuristic(I)
while (h 6= 0)

(u′, h′) ← External-EHC-BFS(u, h)
if (h′ =∞) return ∅
u← u′

h← h′

return ConstructSolution(u)

Figure 6: External Enforced Hill-Climbing.

Procedure External-EHC-BFS(u, h)
Open(−1, h)← ∅,Open(0, h)← u
i← 1
while (Open(i− 1, h) 6= ∅)

A(i)← N(Open(i− 1, h))
forall v ∈ A(i)

h′ = Heuristic(v)
if h′ < h

return (v, h′)
A′(i)← remove duplicates from A(i)
for loc← 1 to locality

A′(i)← A′(i)\ Open(i− loc)
Open(i)← A′(i)
i← i + 1

Figure 7: External-BFS for External Enforced Hill
Climbing. u is the new start state with the heuristic
estimate h.

External Enforced Hill Climbing
Enforced Hill Climbing (EHC) is an enforced form of
hill climbing search. Starting from a start state, a
breadth-first search is performed for a successor with
a better heuristic value. As soon as such a succes-
sor is found, the hash tables are cleared and a fresh
breadth-first search is started. The process continues
until the goal is reached. Since EHC performs a com-
plete breadth-first search on every state with a strictly
better heuristic value, it is guaranteed to find a solu-
tion. The following theorem is due to (Hoffmann &
Nebel 2001).

Theorem 4 For directed graphs without dead-ends,
Enforced Hill Climbing is complete and guaranteed to
find a solution.

Having external BFS in hand for planning domains,
an external algorithm for enforced hill limbing can be
constructed by utilizing the heuristic estimates. In Fig-
ure 6, we show the algorithm in pseudo-code format
for external enforced hill-climbing. The externalization
is embedded in the sub-procedure (Figure 7) that per-
forms external breadth-first search for a state with bet-
ter heuristic estimate. As heuristic guidance, we chose
relax plan heuristics (Hoffmann 2003).



Conclusions

In this paper, we discussed a method to translate tem-
poral and preference constraints into PDDL2. Tempo-
ral constraints are converted into Büchi automata in
PDDL format, and are executed synchronously with
the main exploration. Preferences are compiled away
by a transformation into numerical fluents that impose
a penalty upon violation. Incorporating better heuris-
tic guidance, especially, for preferences is still an open
research frontier.

We discuss two external algorithms in this paper:
Cost-optimal external breadth-first search and exter-
nal enforced hill climbing search for non-optimal plan-
ning. The crucial problem in external memory algo-
rithms is the duplicate detection with respect to previ-
ous layers to guarantee termination. Using the local-
ity of the graph calculated directly from the operators
themselves, we provide a bound on the number of pre-
vious layers that have to be looked at.

Since states are kept on disk, external algorithms
have a large potential for parallelization. We noticed
that most of the execution time is consumed while
calculating heuristic estimates. Distributing a layer
on multiple processors can distribute the internal load
without having any effect on the I/O complexity.
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