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Abstract

In this paper we study Fxternal A*, a variant of the internal A* algorithm that employs
external memory. The approach applies to implicit, undirected, unweighted state space
problem graphs with consistent estimates. The complexity of the External algorithm is
almost linear in external sorting time and accumulates to O(sort(|E|) + scan(|V])) 1/Os,
where V' and F are the set of nodes and edges in the explored portion of the state space
graph. Given that delayed duplicate elimination has to be performed, the established
bound is I/O optimal. In difference to the internal design in the construction we exploit
memory locality to allow block rather than random access. The algorithmic design refers
to external shortest path search in explicit graphs and extends the strategy of delayed
duplicate detection recently suggested for breadth-first search to best-first search. We
conduct experiments with sliding-tile puzzle instances.

1. Introduction

Often search spaces are so big that they don’t fit into main memory. In this case, during
the algorithm only a part of the graph can be processed at a time; the remainder is stored
on a disk. However, hard disk operations are about a 10° — 10 times slower than main
memory accesses. Moreover, according to recent estimates, technological progress yields
about annual rates of 40-60 percent increase in processor speeds, while disk transfers only
improve by seven to ten percent. This growing disparity has led to a growing attention to
the design of I/O-efficient algorithms in recent years.

Most modern operating systems hide secondary memory accesses from the programmer,
but offer one consistent address space of wvirtual memory that can be larger than internal
memory. When the program is executed, virtual addresses are translated into physical
addresses. Only those portions of the program currently needed for the execution are copied
into main memory. Application programs may exhibit locality in their pattern of memory
accesses: i.e., data residing in a few pages are repeatedly referenced for a while, before the
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program shifts attention to another working set. Caching and pre-fetching heuristics have
been developed to reduce the number of page faults (the referenced page does not reside in
the cache and has to be loaded from a higher memory level). By their nature, however, these
methods are general-purpose and can not always take full advantage of locality inherent in
algorithms. Algorithms that explicitly manage the memory hierarchy can lead to substantial
speedups, since they are more informed to predict and adjust future memory access.

Different variants of breadth-first and depth-first traversal of external graphs have been
proposed earlier (Meyer, Sanders, & Sibeyn, 2003; Chiang, Goodrich, Grove, Tamasia,
Vengroff, & Vitter, 1995). In this paper we address A* search on secondary memory: in
problems where we try to find the shortest path to a designated goal state, it has been shown
that the incorporation of a heuristic estimate (lower bound) for the remaining distance of a
state can significantly reduce the number of nodes that need to be explored (Hart, Nilsson,
& Raphael, 1968).

The remainder of the paper is organized as follows. First we introduce the most widely
used computation model, which counts I/Os in terms of transfers of blocks of records of fixed
size to and from secondary memory. We describe some basic external-memory algorithms
and some data structures relevant to graph search. Then we turn to the subject of external
graph search that is concerned with breadth-first search in explicit graphs stored on disk.
Korf’s delayed duplicate detection algorithm (Korf, 2003) adapts Munagala and Ranade’s
algorithm (Munagala & Ranade, 2001) for the case of implicit graphs, and is presented next.
Then we invent External A*, which extends delayed duplicate detection to heuristic search.
Internal and I/O complexities are derived followed by an optimality argument based on a
lower bound for delayed duplicate detection. Finally, we address related work and draw
conclusions.

2. Model of Computation

The commonly used model for comparing the performance of external algorithms consists
of a single processor, a small internal memory that can hold up to M data items, and an
unlimited secondary memory. The size of the input problem (in terms of the number of
records) is abbreviated by N. Moreover, the block size B governs the bandwidth of memory
transfers. It is often convenient to refer to these parameters in terms of blocks, so we define
m = M/B and n = N/B. It is usually assumed that at the beginning of the algorithm,
the input data is stored in contiguous block on external memory, and the same must hold
for the output. Only the number of block read and writes are counted, computations in
internal memory do not incur any cost. An extension of the model considers D disks that
can be accessed simultaneously. When using disks in parallel, the technique of disk striping
can be employed to essentially increase the block size by a factor of D. Successive blocks
are distributed across different disks.

Formally, this means if we enumerate the records from zero, the i-th block of the j-th disk
contains items number (¢DB+jB) through (iDB+(j—1)B—1). Usually, it is assumed that
M < N and DB < M/2. We can distinguish two general approaches to external memory
algorithms: either we can devise algorithms to solve specific computational problems while
explicitly controlling secondary memory access; or, we can develop general-purpose external-
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Operation ‘ Complexity ‘ Optimality achieved by
scan(N) O(45) =9(%) Trivial sequential access
sort(N) @(% lognr/ %) = O(p log,,n) | Merge or Distribution Sort

Table 1: Primitives of external-memory algorithms.

memory data structures, such as stacks, queues, search trees, priority queues, and so on,
and then use them in algorithms that are similar to their internal-memory counterparts.

3. Basic Primitives of I/O-Efficient Algorithms

It is often convenient to express the complexity of external-memory algorithms using a
number of frequently occurring primitive operations. These primitives, together with their
complexities, are summarized in Table 1. The simplest operation is scanning, which means
reading a stream of records stored consecutively on secondary memory. In this case, it is
trivial to exploit disk- and block-parallelism. The number of I/Os is @(%) =0(pH)-

Sorting is a fundamental problem that arises in almost all areas of computer science.
Besides the classical uses, it is often useful to eliminate I/O accesses in external-memory
algorithms. The proposed algorithms fall into two categories: those based on the merging
paradigm, and those based on the distribution paradigm.

External mergesort converts the input into a number of elementary sorted sequences of
length M using internal-memory sorting. Subsequently, a merging step is applied repeatedly
until only one run remains. A set of k sequences Si,...,S; can be merged into one run
with O(NN) operations by reading each sequence in blockwise manner. In internal memory,
k cursors p; are maintained for each of the sequences; moreover, it contains one buffer block
for each run, and one output buffer. Among the elements pointed to by the pg, one with
the smallest key, say p;, is selected; the element is copied to the output buffer, and p; is
incremented. Whenever the output buffer reaches the block size B, it is written to disk, and
emptied; similarly, whenever a cached block for an input sequences has been fully read, it is
replaced with the next block of the run in external memory. When using one internal buffer
block per sequence, and one output buffer, each merging phase uses O(N/B) operations.
The best result is achieved when k is chosen as big as possible, i.e., k = M/B. Then sorting
can be accomplished in O(log,, /B %) phases, resulting in the overall optimal complexity.

On the other hand, algorithms based on the distribution paradigm partition the input
data into disjoint sets S;, 1 <1 < k, such that the key of each element in .S; is smaller than
that of any element in Sj;, if 7 < j. In order to produce this partition, a set of splitters
—00 =80 < 8] < ... < 8 < Sgr1 = 00 is chosen, and S; is defined to be the the subset of
elements x € S with s; < < s;41. The splitting can be done I/O-efficiently by streaming
the input data through an input buffer, and also using an output buffer. Then, each subset
S; is recursively sorted, unless its size allows sorting in internal memory. The final output
is produced by concatenating all of the elementary sorted subsequences. Optimality can be
achieved by a good choice of splitters, i.e., such that |S;| = O(N/k). It has been proposed
to calculate the splitters in linear time based on the classical internal-memory selection
algorithm to find the k-smallest element. We note that, while we will only be concerned
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with the case of a single disk (D = 1), it is much more challenging to make optimal use of
multiple disks with ©(J%5 logar/ ) = ©(%log,, n) 1/0s. Simple disk striping does not
lead to optimal external sorting. It has to be ensured that each read operation brings in
Q(D) blocks, and each write operation must store (D) blocks on disk. For distribution
sort, the buckets have to be hashed to the disks almost uniformly. This can be achieved
using a randomized scheme.

4. External BFS

Since heuristic search algorithms are often applied to huge problem spaces, it is an ubiqui-
tous issue in this domain to cope with internal memory limitations. A variety of memory-
restricted search algorithms have been developed to work under this constraint. A widely
used algorithm is Korf’s iterative deepening A* (IDA*) algorithm, which requires only space
linear in the solution length (Korf, 1985), in exchange for an overhead in computation time
due to repeated expansion. Various schemes have been proposed to reduce this overhead by
flexibly utilizing additionally available memory. The common framework usually imposes a
fixed upper limit on the total memory the program may use, regardless of the size of the
problem space. Most of these papers do not explicitly distinguish whether this limit refers
to internal memory or to disk space, but frequently the latter one appears to be implicitly
assumed. On the contrary, in this section we introduce techniques that explicitly manage a
two-level memory hierarchy.

4.1 Explicit Graphs

Under external graph algorithms, we understand algorithms that can solve the depth-first
search (DFS), breadth-first search (BFS), or single-source shortest path (SSSP) problem for
explicitly specified directed or undirected graphs that are too large to fit in main memory.
We can distinguish between assigning (BFS or DFS) numbers to nodes, assigning BFS
levels to nodes, or computing the (BFS or DFS) tree edges. However, for BFS in undirected
graphs it can be shown that all these formulations are reducible to each other up to an
edge-list sorting in O(sort(|E|) I/O operations.

The input is usually assumed to be an unsorted edge list stored contiguously on disk.
However, frequently algorithms assume an adjacency list representation, which consists of
two arrays, one which contains all edges sorted by the start node, and one array of size |V|
which stores, for each vertex, its out-degree and offset into the first array. A preprocessing
step can accomplish this conversion in time O(%sortﬂ‘/])).

Recall the standard internal-memory BFS algorithm: it visits each vertex v € V of
the input graph G = (V, E) in a one-by-one fashion, as stored in a FIFO queue Q. After
a vertex v is extracted, its adjacency list (the sets of neighbors in G) is examined, and
those of them that haven’t been visited so far are inserted into () in turn. Naively running
the standard internal-BFS algorithm in the same way in external memory will result in
©(|V]) 1/Os for unstructured accesses to the adjacency lists, and ©(|E|) I/Os for finding
out whether neighboring nodes have already been visited. The latter task is considerably
easier for undirected graphs, since duplicates are constrained to be located in adjacent levels.
Next section presents an algorithm for this case; then, a later improvement of the algorithm
is described that helps to reduce the former complexity.
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Procedure External Breadth-First-Search
Open(—1) « Open(=2) «— 0; U «— V
10
while (Open(i —1) #0 v U #0)
if (Open(i — 1) = 0)
Open(i) « {z}, where x € U
else
A(i) < N(Open(i—1))
A'(i) «— remove duplicates from A(i)
Open(i) — A'(i) \ (Open(i — 1) U Open(i — 2))
foreach v € Open(i)
U—U\{v}
1— 141

Figure 1: External BFS by Munagala and Ranade

The algorithm of Munagala and Ranade (Munagala & Ranade, 2001) improves on the
latter complexity for the case of undirected graphs, in which duplicates are constrained to
be located in adjacent levels. The algorithm builds Open(i) from Open(i — 1) as follows:
Let A(i) = N(Open(i — 1)) be the multi-set of neighbor vertices of nodes in Open(i — 1);
A(i) is created by concatenating all adjacency lists of nodes in Open(i — 1). Since af-
ter the preprocessing step the graph is stored in adjacency-list representation, this takes
O(|Open(i—1)|+|N(Open(i—1))|/B) I/Os. Then the algorithm removes duplicates by exter-
nal sorting followed by an external scan. Hence, duplicate elimination takes O(sort(A(7)))
I/Os. Since the resulting list A’(4) is still sorted, filtering out the nodes already contained
in the sorted lists Open(i — 1) or Open(i — 2) is possible by parallel scanning, therefore this
step can be done using O(sort(|N(Open(i—1))|) + scan(| Open(i — 1)|+ | Open(i — 2)|)) 1/Os.
This completes the generation of Open(i). The algorithm can record the nodes’” BFS-level
in additional O(]V|) time using an external array. Figure 1 provides the implementation
of the algorithm of Munagala and Ranade in pseudo-code. A doubly-linked list U main-
tains all unvisited nodes, which is necessary when the graph is not completely connected.
Since >, |[N(Open(i))| = O(|E|) and }_; |Open(i)| = O(|V|), the execution of external BFS
requires O(|V| + sort(|E|)) time, where O(]V]) is due to the external representation of the
graph and the initial reconfiguration time to enable efficient successor generation.

The bottleneck of the algorithm are the O(|V]) unstructured accesses to adjacency lists.
The refined algorithm (Mehlhorn & Meyer, 2002) consists of a preprocessing and a BFS
phase, arriving at a complexity of O(y/[V] - scan([V] + |E|) + sort(|V| + |E|)) 1/Os.

The preprocessing stage partitions the graph into K disjoint subgraphs {S; |1 <i < K}
with small internal shortest-path distances; the adjacency lists are accordingly partitioned
into consecutively stored sets { F;|1 < i < K} as well. The partitions are created by choosing
seed nodes independently with uniform probability p. Then K BFS are run in parallel,
starting from the seed nodes, until all nodes of the graph have been assigned to a subgraph.
In each round, the active adjacency lists of nodes lying on the boundary of their partition are




EDELKAMP, JABBAR, SCHROEDL

scanned; the requested target nodes are labelled with the partition identifier, and are sorted
(Ties between partitions are arbitrarily broken). Then, a parallel scan of the sorted requests
and the graph representation can extract the unvisited part of the graph, as well as label
the new boundary nodes and generate the active adjacency lists for the next round. The
expected I/O-bound for the graph partitioning is O((|V|+ |E|)/uDB + sort(|V| 4 |E])); the
expected shortest-path distance between any two nodes within a subgraph is O(i) The
main idea of the second phase is to replace the node-wise access to adjacency lists by a
scanning operation on a file H that contains all F; in sorted order such that the current
BFS level has at least one node in S;. All subgraph adjacency lists in F; are merged with H
completely, not node-by node. Since the shortest path within a partition is of order O(i),
each F; stays in H accordingly for at most O(i) levels. The second phase uses O(u|V| +
(|VI+|E|)/uDB + sort(|[V]+ |E])) 1/0s in total; choosing u = min{1, \/(|V| + |E|)/uDB},
we arrive at a complexity of O(\/|V] - scan([V] + |E])+ sort(|V|+]E|)) I/Os. An alternative
to the randomized strategy of generating the partition described here is a deterministic
variant using an Euler tour around a minimum spanning tree. Thus, the obtained bound

also holds in the worst case.

4.2 Implicit Graphs

An implicit graph is a graph that is not residing on disk but generated by successively
applying a set of operators to states selected from the search horizon. The advantage in
implicit search is that the graph is generated by a set of rules, and hence no disk accesses
for the adjacency lists are required.

A variant of Munagala and Ranade’s algorithm for BFS-search in implicit graphs has
been coined with the term delayed duplicate detection for frontier search (Korf, 2003). Let
7 be the initial state, and N be the implicit successor generation function. The algorithm
maintains BFS layers on disk. Layer Open(i—1) is scanned and the set of successors are put
into a buffer of size close to the main memory capacity. If the buffer becomes full, internal
sorting followed by a duplicate elimination phase generates a sorted duplicate-free state
sequence in the buffer that is flushed to disk!. The outcome of this phase are k pre-sorted
files.

In the next step, external merging is applied to unify the files into Open(i) by a si-
multaneous scan. The size of the output files is chosen such that a single pass suffices.
Duplicates are eliminated. Since the files were presorted, the complexity is given by the
scanning time of all files. One also has to eliminate Open(i — 1) and Open(i — 2) from
Open(i) to avoid re-computations; that is, nodes extracted from the external queue are
not immediately deleted, but kept until after the layer has been completely generated and
sorted, at which point duplicates can be eliminated using a parallel scan. The process is
repeated until Open(i — 1) becomes empty, or the goal has been found.

The corresponding pseudo-code is shown in Figure 2. Note that the explicit partition
of the set of successors into blocks is implicit. Termination is not shown, but imposes no
additional implementation problem.

1. Delayed internal duplicate elimination can be improved by using hash tables for the blocks before flushed
to disk. Since the state set in the hash table has to be stored anyway, the savings by early duplicate
detection are small.
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Procedure Delayed-Duplicate- Detection-Frontier-Search
Open(—1) <« (), Open(0) — {Z}
11
while (Open(i — 1) # ()
A(i) < N(Open(i — 1))
A'(i) «+ remove duplicates from A(7)
Open(i) — A'(i) \ (Open(i — 1) U Open(i — 2))
1—i1+1

Figure 2: Delayed duplicate detection algorithm for BF'S.

As with the algorithm of Munagala and Ranade, delayed duplicate detection applies
O(sort(|N(Open(i—1))|)+scan(| Open(i—1)|+|Open(i—2)|)) I/Os. However, since no explicit
access to the adjacency list is needed, by >, |N(Open(i))| = O(|E|) and Y, |Open(i)| =
O(|V]), the total execution time is O(sort(|E|) + scan(|V])) I/Os.

In exploration problems where the branching factor is bounded, we have |E| = O(|V]),
and thus the complexity for implicit external BFS reduces to O(sort(|V])) 1/Os.

The algorithm applies scan(| Open(i —1)|+ |Open(i —2)|) I/Os in each phase. Does sum-
ming these quantities in fact yield O(scan(|V])) I/Os, as stated? In very sparse problem
graphs that are simple chains, if we keep each Open(i) in a separate file. this would accu-
mulate to O(|V]) I/Os in total. However, in this case the states in Open(i), Open(i+ 1),
and so forth are stored consecutively in internal memory. Therefore, I/0O is only needed if
a level has Q(B) states, which can happen only for O(|V|/B) levels.

Delayed duplicate detection was used to generate the first complete breadth-first search
of the 2x 7 sliding tile puzzle, and the Towers of Hanoi puzzle with 4 pegs and 18 disks. It can
also be used to generate large pattern databases that exceed main memory capacity (Korf &
Felner, 2002). One file for each BFS layer will be sufficient. The algorithm shares similarities
with the internal Frontier search algorithm (Korf, 1999; Korf & Zhang, 2000) that was used
for solving multiple sequence alignment problem.

5. External A*

In the following we study how to extend external breadth-first-exploration in implicit graphs
to best-first search. The main advantage of A* with respect to BFS is that, due to the use
of a lower bound on the goal distance, it must only traverse a smaller part of the search
space to establish an optimal solution.

In A*, the merit for state u is f(u) = g(u) + h(u), with g being the cost of the path
from the initial state to u and h(u) being the estimate of the remaining costs from u to
the goal. In each step, a node u with minimum f-value is removed from Open, and the
new value f(v) of a successor v of u is updated to the minimum of its current value and
fw) =gW)+ h) =g(u) + w(u,v) + h(v) = f(u) +w(u,v) — h(u) + h(v); in this case, it
is inserted into Open itself.
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In our algorithm, we assume a consistent heuristic, where for all v and v we have
w(u,v) > h(u) — h(v), and a uniformly weighted undirected state space problem graph.
These conditions are often met in practice, since many problem graphs in single agent
search are uniformly weighted and undirected and many heuristics are consistent. BF'S can
be seen as a special case of A* in uniform graphs with a trivial heuristic & that evaluates
to zero for each state.

Under these assumptions, we have h(u) < h(v)+1 for every state u and every successor
v of u. Since the problem graph is undirected this implies |h(u)—h(v)| < 1 and h(v)—h(u) €
{—1,0,1}. If the heuristic is consistent, then on each search path, the evaluation function f
is non-decreasing. No successor will have a smaller f-value than the current one. Therefore,
the A* algorithm, which traverses the state set in f-order, expands each node at most once.

Take for example sliding tile puzzles, where numbered tiles on a rectangular grid have to
be brought into a defined goal state by successively sliding tiles into one empty square. The
Manhattan distance is defined as the sum of the horizontal and vertical differences between
actual and goal configurations, for all tiles. It is easy to see that the Manhattan distance is
consistent, since for two successive states u and v the difference of the according estimate
evaluations h(v) — h(u) is either -1 or 1. Therefore, f-values of u and v are either the same

or f(v) = f(u) +2.

5.1 Buckets

As above, External A* maintains the search horizon on disk, possibly partitioned into main-
memory-sized sequences. In fact, the disk files correspond to an external representation of
Dial’s implementation of a priority queue data structure that is represented as an array of
buckets (Dial, 1969). In the course of the algorithm, each bucket addressed with index ¢ will
contain all states u in the set Open that have priority f(u) =i. An external representation
of this data structure will memorize each bucket in a different file.

We introduce a refinement of the data structure that distinguishes between states of
different g-values, and designates bucket Open(i, ) to all states u with path length g(u) =1
and heuristic estimate h(u) = j.

As with the description of external BFS, we do not change the identifier Open to sep-
arate generated from expanded states (traditionally denoted as the Closed list). During
the execution of A*, bucket Open(i, j) may refer to elements that are in the current search
horizon or belong to the set of expanded nodes. During the exploration process, only nodes
from one currently active bucket Open(i,j) with i + j = fmin are expanded, up to its ex-
haustion. Buckets are selected in lexicographic order for (7, j); then, the buckets Open(i’, j)
with i’ < i and i’ + j' = fuin are closed, whereas the buckets Open(i’, j') with ¢ 4+ 5" > fiin
or with ¢/ > 7 and ¢’ + 7' = fuin are open. For states in the active bucket the status is either
open or closed.

For an optimal heuristic, i.e., a heuristic that estimates the shortest path distance f*,
A* will consider the buckets Open(0, f*),..., Open(f*,0). On the other hand, if the heuris-
tic is trivial it considers the buckets Open(0,0),..., Open(f*,0). This might lead to the
hypothesis that the A* looks at f* buckets. Unfortunately, this is not true.

Consider Figure 3, in which the g-values are plotted with respect to the h-values, such
that states with the same f = g 4+ h value are located on the same diagonal. For states
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Figure 3: The number of buckets selected in A*.

that are expanded in Open(g, h) the successors fall into Open(g + 1,h — 1) Open(g + 1, h),
or Open(g+1,h+1). The number of naughts for each diagonal is an upper bound on
the number buckets that are needed. It is trivial to see that the number is bounded by
f*(f* 4+ 1)/2, since naughts only appear in the triangle bounded by the f*-diagonal. We
can, however, achieve a slightly tighter bound.

Lemma 1 The number of buckets Open(i, j) that are considered by A* in a uniform state
space problem graph with a consistent heuristic is bounded by (f* +1)?/3.

Proof: Let d be the distance f* — h(Z). Below h(Z) there are at most d - h(Z) 4+ h(Z)
nodes. The roof above h(Z) has at most 1 +3 + ...+ 2(d/2) — 1 nodes (counted from top
to bottom). Since the sum evaluates to d?/4 we need at most d- h(Z) + h(Z) + d? /4 buckets
altogether. The maximal number of bucket ((f*)%+ f*+1)/3 is reached for h(Z) = (f*+2)/3.

By the restriction for f-values in the sliding-tile puzzles only about half the number of
buckets have to be allocated. Note that f* is not known in advance, so that we have to
construct and maintain the files on the fly.

As in the algorithm of Munagala and Ranade, we can exploit the observation that in
undirected state space graph structure, duplicates of a state with BFS-level i can at most
occur in levels 4, i — 1 and 7 — 2. In addition, since h is a total function, we have h(u) = h(v)
if w = v. This implies the following result.

Lemma 2 During the course of executing A*, for all i,i,7,7 with j # j' we have that
Open(i, j) N Open(#, ') = 0.

Lemma, 2 allows to restrict duplicate detection to buckets of the same h-value.

5.2 The Algorithm

For ease of describing the algorithm, we consider each bucket for the Open list as a different
file. By Lemma 1 this accumulates to at most (f* + 1)2/3 files. For the following we
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therefore generally assume (f*+1)2/3 = O(scan(|V])) and (f* +1)2/3 = O(sort(|E|)). As
with the algorithm of Munagala and Ranade, however, it is not difficult to implement the
algorithm to handle sparser graphs, too.

Figure 4 depicts the pseudo-code of the External A* algorithm for consistent estimates
and uniform graphs. The algorithm maintains the two values gmin and fiin to address
the currently considered buckets. The buckets of fun are traversed for increasing gmin up
to fmin. According to their different h-values, successors are arranged into three different
horizon lists A( fmin), A(fmin+1), and A(fmin+2); hence, at each instance only four buckets
have to be accessed by I/O operations. For each of them, we keep a separate buffer of size
B/4; this will reduce the internal memory requirements to B. If a buffer becomes full then
it is flushed to disk. Asin BFS it is practical to presort buffers in one bucket immediately by
an efficient internal algorithm to ease merging, but we could equivalently sort the unsorted
buffers for one buckets externally.

There can be two cases that can give rise to duplicate nodes within an active bucket:
two different nodes of the same predecessor bucket generating similar nodes, and two nodes
belonging to different predecessor buckets generating similar nodes. These two cases can be
dealt with by merging all the pre-sorted buffers corresponding to the same bucket, resulting
in one sorted file. This file can then be scanned to remove the duplicate nodes from it. In
fact, both the merging and duplicates removal can be done simultaneously.

Another special case of the duplicate nodes exists when the nodes that have already
been evaluated in the upper layers are generated again. These duplicate nodes have to be
removed by a file subtraction process for the next active bucket Open(gmin + 1, hmax — 1) by
removing any node that has appeared in Open(gmin, hmax — 1) and Open(gmin — 1, hmax —1).
This file subtraction can be done by a mere parallel scan of the presorted files and by using
a temporary file in which the intermediate result is stored.

Note that it suffices to perform the duplicate removal only for the bucket that is to be
expanded next, i.e., Open(gmin + 1, hmax — 1). The other buckets might not have been fully
generated and hence we can save the redundant scanning of the files for every iteration of
the inner most while loop.

When merging the presorted sets A’ with the previously existing Open buckets (both
residing on disk), duplicates are eliminated, leaving the sets Open(gmin + 1, hmax — 1),
Open(gmin + 1, hmax) and Open(gmin + 1, hmax — 1) duplicate-free. Then the next active
bucket Open(gmin+1, hmax—1) is refined not to contain any state in Open(gmin — 1, hmax — 1)
or Open(gmin, hmax — 1). This can be achieved through a parallel scan of the presorted files
and by using a temporary file in which the intermediate result is stored, before Open(gmin—+1,
hmax — 1) is updated. It suffices to perform file subtraction lazily only for the bucket that
is expanded next.

Since External A* simulates A* and changes only the order of elements to be expanded
that have the same f-value, completeness and optimality are inherited from the properties
shown for A* (Pearl, 1985).

Theorem 1 (I/O performance of External A*) The complezity for External A* in an
implicit unweighted and undirected graph with a consistent estimate is bounded by O(sort(| E|)+

scan(|V|)) 1/0s.

10
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Procedure External A*
Open(0,h(Z)) — {Z}
fmin < h(I)
while (fuin # 00)
Gmin — min{i | Open(i, fimin — i) # 0}
while (gmin < fmin)
Pmax fmin — 9min
A(fmin), A(fmin + 1)’ A(fmin + 2) — N(Open(gmina hmax))
Open(gmin + 1, hmax + 1) — A(frnin + 2)
Open(gmin +1, hmax) — A(fmin + 1) U Open(gmin +1, hmax)
Open(gmin + 1, Amax — 1) — A(fmin) U Open(gmin + 1, hmax — 1)
Open(gmin + 1, hmax — 1) < remove duplicates from Open(gmin + 1, Amax — 1)
0pen(gmin +1, hmax — 1) — Open(gmin +1, Pmax — 1)\
(Open(gmin, hmax — 1) U Open(gmin — 1, hmax — 1))
Jmin < gmin + 1
fmin = min{i +j > fuin | Open(i, j) # 0} U {oo}

Figure 4: External A* for consistent and integral heuristics.

Proof: By simulating internal A* the delayed duplicate elimination per serves that
each edge in the state space problem graph is looked at at most once.

Similar to the analysis for external implicit BFS O(sort(|N(Open(gmin + 1, Amax — 1))|)
I/Os are needed to eliminate duplicates in the successor lists. Since each state is expanded
at most once, this yields O(sort(|E|)) I/Os for the overall run time. Filtering, evaluating
states, and merging lists is available in scanning time of all buckets in consideration. During
the exploration, each bucket Open will be referred to at most six times, once for expansion,
at most three times as a successor bucket and at most two times for duplicate elimination
as a predecessor of the same h-value as the currently active bucket. Therefore, evaluating,
merging and file subtraction add O(scan(|V]) + scan(|E|)) 1/Os to the overall run time.
Hence, the total execution time is O(sort(|E|) 4+ scan(|V])) 1/Os.

As a corollary, if we additionally have |E| = O(|V]), the complexity reduces to O(sort(|V]))
I/Os.

Internal costs have been neglected in the above analysis. Since each state is considered
only once for expansion, the internal costs are |V| times the time ¢, for successor gener-
ation, plus the efforts for internal duplicate elimination and sorting. By setting new edges
weight w(u,v) to h(u) — h(v) + 1, for consistent heuristics A* can be cast as a variant of
Dijkstra’s algorithm that requires internal costs of O(C - |V]), C' = max{w(u,v) | v suc-
cessor of u} on a Dial. Due to consistency we have C' < 2, so that, given |E| = O(|V]),
internal costs are bounded by O(|V| - (tewp + log [V])), where O(|V|log |V])) refers to the
total internal sorting efforts.

To reconstruct a solution path, we could store predecessor information with each state
on disk, and apply backward chaining, starting with the target state. However, this is not

11
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strictly necessary: For a state in depth g, we intersect the set of possible predecessors with
the buckets of depth g — 1. Any state that is in the intersection is reachable on an optimal
solution path, so that we can recur. The time complexity is bounded by the scanning time
of all buckets in consideration and surely in O(scan(|V])).

5.3 Non-Uniformly Weighted Graphs

Up to this point, we have made the assumption of uniformly weighted graphs; in this section,
we generalize the algorithm to small integer weights in {1,...,C}. Due to consistency of
the heuristic, it holds for every state u and every successor v of u that h(v) > h(u)—w(u,v).
Moreover, since the graph is undirected, we equally have h(u) > h(v) — w(u,v), or h(v) <
h(u)+w(u,v); hence, |h(u)—h(v)| < w(u,v). This means that the successors of the nodes in
the active bucket are no longer spread across three, but over 3+5+...4+2C+1 = C-(C+2)
buckets.

For duplicate reduction, we have to subtract the 2C buckets Open(i—1,j) ..., Open(i—
2C, ) from the active bucket Open(i, j) prior to its nodes’ expansion. It can be shown by
induction over f = i+j that no duplicates exist in smaller buckets. The claim is trivially true
for f < 2C. In the induction step, assume to the contrary that for some node v € Open(i, j),
Open(i', 7) contains a duplicate v' with i’ < i — 2C; let u € Open(i — w(u,v),j,) be the
predecessor of v. Then, by the undirectedness, there must be a duplicate v’ € Open(i’ +
w(u,v), jy). But since f(u') =& +w(u,v)+j, <V +C+ju <i—C+jy <i—w(u,v)+j, =
f(u), this is a contradiction to the induction hypothesis.

The derivation of the I/O complexity is similar to the uniform case; the difference is
that each bucket is referred to at most 2C + 1 times for bucket subtraction and expansion.
Therefore, each edge in the problem graph is considered at most once. Also, we need O(C?)
I/0Os for accessing the files, which in fact can be eliminated by a similar strategy as in BFS
algorithm by Munagala and Ranade. The following theorem bounds the I/O complexity of
the external A* algorithm for non-uniform graphs.

Theorem 2 (I/O performance of External A* for non-uniform graphs) The 1/0
complexity for External A* in an implicit unweighted and undirected graph, where the
weights are in {1,...,C}, with a consistent estimate, is bounded by O(sort(|E|) + C -
scan(|V])).

If we do not impose a bound C' on the maximum integer weight, or if we allow directed
graphs, the run time increases to O(sort(|E|) 4+ f*-scan(|V])) I/Os. For larger edge weights
and f*-values, buckets become sparse and should be handled more carefully.

6. Lower Bound

Is O(sort(]V])) I/O-optimal? To devise lower bounds for delayed duplicate elimination, the
following definition for big-oh is appropriate:

O(f(n,M,B)) = {g|3ceR"VYM,BecIN
Ing € IN Vn > ng : g(n, M, B) < f(n, M, B)}.

12
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The classes © and €2 are defined analogously. The intuition for universally quantifying
M and B is that the adversary first chooses the machine, and then we, as the good guys,
evaluate the bound. Aggarwal and Vitter (Aggarwal & Vitter, 1987) showed that external
sorting in this model has the above-mentioned I/O complexity of Q2 (N log % /Blog %)
and provide two algorithms that are asymptotically optimal. As internal set inequality,
set inclusion and set disjointness require at least N log N — O(N) comparisons, the lower
bound on the number of I/Os for these problems is also bounded by Q(sort(N)).

Arge, Knudsen and Larsen (Arge, Knudsen, & Larsen, 1993) considered the duplicate
elimination problem. A lower bound on the number of comparisons needed is N log N —
Sk | Nijlog N; — O(N) where N; is the multiplicity of record i. The authors argue in detail
that after the duplicate removal, the total order of the remaining records is known. This
corresponds to an I/O complexity of at most

Nlog ¥ — % | Nilog NV;
Q | max W Zl_]\l/[ o8 ,N/B3}|.
Blog &

The authors also give an involved algorithm based on mergesort that matches this bound.
For the sliding tile puzzle with two predecessing buckets and a branching factor b < 4 the
value of N; is less than or equal to 8. For general consistent estimates in uniform graphs,
we have N; < 3¢, with ¢ being an upper bound on the maximal branching factor. A search
algorithm performs delayed duplicate bucket elimination, if it eliminates duplicates within
one bucket and with respect to adjacent buckets that are duplicate free.

Theorem 3 (I/O Performance Optimality for External A*)) If |E| = O(|V]), de-
layed duplicate bucket elimination in an implicit unweighted and undirected graph A* search
with consistent estimates needs at least Q(sort(|V])) 1/O operations.

Proof: Since each state gives rise to at most ¢ successors and there at most 3 predecess-
ing buckets in A* search with consistent estimates in an uniformly weighted graph, given
that previous buckets are mutually duplicate free, we have at most 3c states that are the
same. Therefore, all sets N; are bounded by 3c. Since k is bounded by N we have that
Zle N;log N; is bounded by k-3clog 3c = O(N). Therefore, the lower bound for duplicate
elimination for N states is Q(sort(N) + scan(N)).

A related lower bound also applicable to the multiple disk model (Munagala & Ranade,
2001), establishes that solving the duplicate elimination problem with N elements having P
different values needs at least (% sort(P)) I/Os, since the depth of any decision tree for the
duplicate elimination problem is at least N log(P/2). For state space search with consistent
estimates and bounded branching factor, we assume to have P = O(N) = O(|E|) = O(|V]),
so that the I/O complexity reduces to O(sort|V]).

7. Experiments

We implemented our approach in ANSI C, using simple file access operations fopen, fclose,
fgetc and fputc. Files contain fixed-width records of binary-encoded states. We selected
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S. No. Initial State Initial Estimate | Solution Length
1 (02135467891011 1213 14 15) 4 16

(012354768910 11 1213 14 15) 4 24
(0213547689 13111210 14 15) 10 30
4{12} | (141964812572301011 13 15) 35 45
5{16} | (13251091568 141311124 70) 24 42

( )

( )

( )

6 {14} | (76811151410349131520 12 41 99
7{60} | (1114131231241579510680 48 66
8 {88} | (1521211141395138701064 43 65

Table 2: 15-puzzle instances used for experiments

15-Puzzle problem instances. Many instances cannot be solved internally with A* and the
Manhattan distance. Each state is packed into 8 bytes.

Internal sorting is done by the built-in quicksort routine. External merge is performed by
maintaining the file pointers for every flushed buffer and merging them into a single sorted
file. Since we have a simultaneous file pointers capacity bound imposed by the operating
system, we implemented two-phase merging. Duplicate removal and bucket subtraction are
performed on single passes through the bucket file. The implementation differs a little from
the algorithm presented in this paper in that the duplicate removal within one bucket, as
well as the bucket subtraction are delayed until the bucket is selected for expansion. The
program utilizes an implicit priority queue. For sliding tile puzzles, during expansion, the
successor’s f value differs from the parent state by exactly 2. This implies that in case of
an empty diagonal, the program terminates.

We performed our experiments on a mobile AMD Athlon XP 1.5 GHz processor with
512 MB RAM, running MS Windows XP operating system. In Table 2 we give the example
instances that we have used for our experiments. Some of them are adopted from Korf’s
seminal paper (Korf, 1985) (original numbers given in brackets). We chose some of the
simplest and hardest instances for our experiments. The harder problems cannot be solved
internally and were cited as the core reasons for the need of IDA*.

In Table 3 we show the diagonal pattern of states that is developed during the exploration
for problem instance 1. The entry z+y in the cell (¢, ) implies that x and y number of states
are generated from the expansion of Open(i — 1,7 — 1) and Open(i — 1, j + 1), respectively.

The pattern of duplicate states in each bucket is shown in Table 4. An entry u+v in the
cell (4, ) implies that u states are the duplicate states within a bucket and v states are the
duplicates that are found due to the subtraction of the states of the bucket (i — 2,7). The
actual number of states remaining in a bucket after duplicate removal and subtraction can
be obtained by subtracting the (i, j)th entry of Table 4 from the (7, j)th entry of Table 3.

The impact of internal buffer size on the I/O performance is clearly observable in Table 5.
We show the I/O performance of two instances by varying the internal buffer size B. A larger
buffer implies fewer flushes during writing, fewer block reads during expansion and fewer
processing time due to internally sorting larger but fewer buffers. This I/O information and
time information is collected using the task manager feature of MS Windows XP.

In Table 6, we show the impact of duplicate removal and bucket subtraction. Note
that we do not employ any pruning technique like hashing or predecessor elimination. As
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g/bl 1 2 3 4 5 6 7 8 9 10 11
0 - - - 140 - - - - - - -
1] - : - - 240 - - - - - -
2| - _ - 044 - 240 - - - - -
30 - - - - 7+3 - 440 - - - -
4] - _ - 047 - 1344 - 10+0 - - -
5| - - - - 5415 - 24410 - 24+0 - -
6| - - - 046 - 12426 - 46+28 . 4440 -
7| - - - - 9410 - 20451 ; 99+57 - 76+0
8| - - - 048 - 15425 - 484137 - 19540 -
9| - - - - 4417 - 45452 - 20340 - -

0] - - - 043 - 13449 - 9240 - - -
11| - _ . - 2419 - 46+0 - - - -
12| - : - 045 - 3140 - - - - -
13| - - 042 - 1040 - - - - - -
4| - 042 - 540 - - - - - - -
15 0+2 - 540 - - - - - - - -

Table 3: States inserted in the buckets for instance 1

g/h| 1 2 3 4 5 6 7 8 9 10 11
0l - - - - N N N - -
1 - - - - _ _ _ - _ -
2o - - - 141 - - - - ; -
30 - - - - 242 - - . ; -
40 - - - 342 - 342 - - ; -
50 - - - - 846 - 6+4 . _ -
6 - - - 142 - 16412 - 14410 - -
T - - - - 646 - 24+24 - 26+24 - -
8| - - - 3410 - 10410 - 52450 - -
9| - - - - 947 - 20423 - - .

10 - - - 042 - 21420 - - _ -
1| - - - - 645 - - - - - -
120 - - - 041 - - - - ; -
3 - - - - - - - - - -
| - - - _ - . . _ -
150140 - - - _ ; . _ _ -

Table 4: Duplicate states within a bucket + Duplicate states in top layers for instance 1

observable from the fourth entry, the gain is about 99% when duplicate removal and bucket
subtraction are used. In the latter cases, we had to stop the experiment because of the
limited hard disk capacity.

It should be noted here that these states are the number of states that are generated
during the run and do not represent the total number of states that are actually expanded.
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Initial State | B | I/O Reads | I/O Writes | Time (sec)

10 | 5214 6,525

2 25 3,086 3,016 1
50 2,371 1,843 <1
100 2,022 1,265 <1
50 7,312 8,463 4

3 75 | 6,003 6,377 3
100 5,481 5,329 3
150 | 4,873 4,987 3

Table 5: Effects on I/O performance due to different internal buffer sizes

Initial State N Ny Nartsub
1 530,401 2,800 1,654
2 > 50,000,000 126,741 58,617
3 > 50,000,000 492,123 314,487
4 71,751,166 611,116 493,990
5 <out of disk space> 7,532,113 5,180,710
6 <out of disk space> | <out of disk space> | 297,583,236
7 <out of disk space> | <out of disk space> | 2,269,240,000
8 <out of disk space> | <out of disk space> | 2,956,384,330

Table 6: Impact of duplicate removal and bucket subtraction on generated states

The number of expanded states differs largely from the generated states because of the
removal of duplicate states and generation of states of (f* + 2) diagonal.

Initial State | Nypa- (Korf, 1985) NEz A« Sgzas (GB) | % gain
4 546,344 493,990 0.003 9.58
5 17,984,051 5,180,710 0.039 71.2
6 1,369,596,778 297,583,236 2.2 78.3
7 3,337,690,331 | 2,269,240,000 16.91 32
8 6,009,130,748 2,956,384,330 22 50.8

Table 7: Comparison of space requirement by IDA* and External A*

Finally, we compare the node count of our algorithm to the node count of IDA* in
Table 7. As is noticeable in the table that the problem instances 6,7, and 8 can not be
solved internally, especially 7 and 8 whose memory requirements surpass even the address
limits of current PC hardware.

One interesting feature of our approach from a practical point of view is the ability to
pause and resume the program execution. For large problem instances, this is a desirable
feature in case we reach the system bounds of secondary storage and after upgrading the
system want to resume the execution.
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8. Related Work

The single disk model for external algorithms has been invented by Aggarwal and Vitter.
A detailed survey on current techniques for the design of external memory algorithms can
be established in (Meyer et al., 2003).

External priority queues for general weights are involved. An I/O-efficient algorithm for
single-source shortest path simulates Dijkstra’s algorithm by replacing the priority queue
with the tournament tree data structure (Kumar & Schwabe, 1996). It is a priority queue
data structure that was developed with the application to graph algorithms in mind; it
is similar to an external heap, but it holds additional information. The tree stores pairs
(z,y), where z € {1,..., N} identifies the element, and y is called the key. The tournament
tree is a complete binary tree, except for possibly some rightmost leaves missing. It has
N/M leaves. There is a fixed mapping of elements to the leaves, namely, IDs in the range
from (i — 1)M + 1 through iM map to the i-th leaf. Each element occurs exactly once in
the tree, either in its leaf or in some ancestor thereof. Each node has an associated list of
elements of size between M /2 and M, which are the smallest ones among all descendants.
Additionally, it has an associated buffer of size M. Using an amortization argument, it can
be shown that a sequence of k update, delete, or deleteMin operations on a tournament tree
containing N elements requires at most O(% log, %) accesses to external memory.

The buffered repository tree is a variant of the tournament tree that provides two oper-
ations: insert(x,y) inserts element = under key y, where several elements can have the same
key. extractAll(y) returns and removes all elements that have key .

As in tournament trees, keys come from a key set {1,..., N}, and the leaves in the static
height-balanced binary tree are associated with the key ranges in the same fixed way. Each
internal node stores signals in a buffer of size B, which is recursively distributed to its two
children when it becomes full. Thus, an insert operation needs O(% logy [V]) 1/O amortized
operations. An extractAll operation requires O(logy |[V'|+ %) accesses to secondary memory,
where the first term corresponds to reading all buffers on the path from the root to the
correct leaf, and the second term reflects reading the x reported elements from the leaf.

Moreover, a buffered repository tree 1" is used to remember nodes that were encountered
earlier. When v is extracted from H, each incoming edge (u, v) is inserted into 7" under key
u. If at some later point u is extracted, then extractAll(u) on T yields a list of edges that
should not be traversed because they would lead to duplicates. Before the expansion of u,
these edges are removed from P(u). The algorithm takes O(|V|+ |E|/B) I/Os to access
adjacency lists. The O(|E|) operations on the priority queues change between different P(v)
at most O(|V]) times, leading to a cost of O(|V |+ sort(|E|)). Additionally, there are O(|E|)
insert and O(|V]) extractAll operations on T', which add up to O((|V| + |E|/B) - logs |V|;
this term also dominates the overall complexity of the algorithm.

More efficient algorithms can be developed by exploiting properties of particular classes
of graphs. In the case of directed acyclic graphs (DAGs) that are e.g. apparent in multiple
DNA-sequence alignment problems, we can apply the general technique of time-forward
processing for solving the SSSP-problem. We assume a topological order of Gj i.e., for each
edge (u,v), the index of u is smaller than that of v. The start node has index 0. Nodes
are processed in this order. Due to the fixed ordering, we can access all adjacency lists in
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O(scan(|E|)) time. Since this procedure involves O(|V| + |E|) priority queue operations,
the overall complexity is O(sort(|V |+ |E|)).

It has been shown that the BFS and SSSP problem can be solved with O(sort(|V]))
I/Os for the many subclasses of sparse graphs, e.g

Planar Graphs that can be drawn in a plane in the natural way without having edges
cross between nodes. For example, many route planning graphs are planar.

Outerplanar Graphs are planar graphs such that one of its faces has all nodes on its
boundary.

Grid Graphs are graphs where the nodes are a subset of the vertices of a regular two-
dimensional grid, and edges can only connect neighbor vertices (whose coordinates
can differ by at most one).

Graphs of Bounded Treewidth A tree decomposition is a tree of subsets of the graph
nodes such that both endpoints of each edge are contained in some subset, and such
that on any path between two subsets in the tree decomposition that contain the same
node x, x must also be contained in all of the connecting nodes. The tree width of a
graph is the minimum size of a subset in any of its tree decompositions.

Most algorithms are based on graph separation techniques.

The only other approach that applies A* to secondary memory is referenced as Localiz-
ing A* (Edelkamp & Schrodl, 2000). It presents a heuristic search algorithm to overcome
the lack of memory locality. In connection with software paging, this has lead to a signif-
icant speedup. The basic idea is to organize the graph structure such that node locality
is preserved as much as possible, and to prefer to some degree local expansions over those
with globally minimum f value. As a consequence, the algorithm cannot stop with the
first solution found. However, the overhead in the increased number of expansions can be
significantly outweighed by the reduction in the number of page faults.

The application area of the algorithm is route planning, where a map is partitioned
according to the two dimensional physical layout, and store it as in a tile-wise fashion.
Ideally, the tiles should roughly have a size such that a few of them (as explained shortly)
fit into main memory. The Open list is represented by a new data structure, called Heap-Of-
Heaps. It consists of a collection of k priority queues one for each page. At any instant, only
one of the heaps is designated as being active. One additional priority queue keeps track
of the root nodes inactive priority queues. It is used to quickly find the overall minimum
across all of these heaps.

9. Conclusion

In this work, we present an extension of external undirected BFS graph search to external A*
search which can exploit a goal-distance heuristics. Contrary to some previous works, we are
concerned with implicitly represented graphs. The key issue to efficiently solve the problem
is a file-based priority queue matrix as a refinement to Dial’s priority queue data structure.
For consistent estimates in uniform graphs we show that we achieve optimal I/O complexity.

18



EXTERNAL A*

On the other side of the memory hierarchy, by the achievement of better memory locality
for access, the external design for A* seem likely to increase cache performance.

Different from delayed duplicate detection, we start with the external BFS exploration
scheme of Munagala and Ranade to give complexity results measured in the number of
I/0 operations that the algorithm executes. To the best of our knowledge, the strategy of
delayed duplicate detection has not been previously generalized to best-first search.

There is a tight connection between the exploration of sets of states externally and an
efficient symbolic representation for sets of states with BDDs. The design of existing sym-
bolic heuristic search algorithms seem to be strongly influenced by the delayed duplication
and external set manipulation.

The other research area that is affected are internal memory-restricted algorithms, that
are mainly interested in objective of an early removal of states from the main memory.
The larger space-efficiency of a breadth-first traversal ordering in heuristic search has lead
to improved memory consumption for internal algorithms, with new algorithms entitled
breadth-first heuristic search and breadth-first iterative-deepening (Zhou & Hansen, 2004).

We expect a practical relevant outcome of this research in application domains like Al
planning, multiple sequence alignment, model checking and route planning problems.
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